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Thesis Abstract 
 
Adolescence is a period of significant neurodevelopment and increased vulnerability to the 

onset of depression. However, the neural underpinnings of depression during adolescence 

and the associated risk factors are not well understood. The aim of this PhD research was to 

fill this knowledge gap by examining biological and psychosocial factors associated with the 

emergence of depression during adolescence.  

 

Using a large, population-based sample, the Adolescent Brain Cognitive Development (ABCD) 

Study, my doctoral work found that depression in early adolescence is associated with similar 

neuroimaging findings (cortical and white matter microstructural features) to those seen in 

adult depression samples. Further, the work in this thesis demonstrated that earlier pubertal 

timing is associated with an increased risk for later depression in adolescence. While earlier 

pubertal timing was also related to structural brain features, brain structure was not found to 

mediate the observed association between early pubertal timing and later depressive 

symptoms. This finding highlights the important role that other aspects of a young person’s 

biology, psychology and social world may play, and should be explored in future work.  

 

This thesis also investigated how dynamic functional brain networks relate to irritability in 

adolescent depression using a co-produced youth-researcher design. In this pilot study, I first 

worked with young people to develop a novel fMRI irritability task that reflected the social 

nature of irritability in adolescence. Using a local sample of youth with depressive symptoms, 

I found that dynamic functional brain networks differed between the irritability task and a 

standard resting state scan, which provides preliminary evidence for validation of this novel 

task. Finally, my work demonstrated that properties of dynamic brain networks related to 

emotion regulation and cognitive control were associated with youth depressive symptoms 

and irritable mood.  

 

Taken together, the findings of this thesis suggest that neuroanatomical differences may be 

present early in the disease course of depression and that biological factors, such as early 

pubertal development, relate to depression risk. Moreover, this work provides preliminary 
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evidence to suggest that alterations in dynamic brain network properties are associated with 

depressive symptoms and irritability in adolescence. Further, this doctoral research highlights 

the importance of co-produced study designs in developmental cognitive neuroscience. This 

work makes an important contribution to our understanding of the factors associated with 

the emergence of depression during adolescence, which lays a strong foundation upon which 

to base future longitudinal research.  
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Lay Summary 
 
Adolescence is a time of immense change for our biology, psychology, and social world. These 

changes bring with them both opportunities and risks. On one hand, they allow young people 

to move away from childhood and carve their own identities as independent adults. On the 

other hand, adolescence is also a time when mental health problems, like depression, are 

most likely to emerge. However, how the brain is associated with the onset of depression and 

its associated risk factors during adolescence is not well understood. If we can understand 

how aspects of our biology and behaviour are associated with the emergence of depression 

during adolescence, we might identify better targets and timings for the treatment and 

prevention of depression.  

 

In this thesis, I used brain imaging (MRI) data from volunteers in a large population study of 

adolescents (The Adolescent Brain Cognitive Development Study). My first aim was to 

examine how brain structure is associated with depression in early adolescence. I found that 

differences in brain structure, especially in regions involved in emotion regulation and 

cognitive control, were associated with higher levels of depressive symptoms in youth aged 

9-11 years. Overall, the brain structural alterations that were related to adolescent 

depression were like those observed in adults with depression. However, there were also 

some differences in brain structure specific to adolescent depression. This suggests that brain 

structural alterations may be present early in the disease course of depression and that some 

of these differences may be specific to adolescent-onset depression. 

 

The second aim of this thesis was to examine whether earlier pubertal timing is associated 

with an increased risk for depression in adolescence, and how brain structure might affect 

this relationship. Pubertal timing refers to an individual’s pubertal development relative to 

their same-age, same-sex peers. Previous research has found that earlier pubertal timing is 

associated with an increased risk for depression in both males and females but the role of 

brain structure in this association had remained unclear. I replicated previous research using 

a large, demographically diverse sample and found that individuals, aged 10-11 years, who 

began puberty before their peers were more likely to report higher levels of depression two 
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years later, when they were aged 12-13 years. I also explored whether specific aspects of 

brain structure played a role in this association, but I did not find that this was the case. This 

highlights the need to explore the role that other biological (e.g., genetics, brain function), 

psychological (e.g., self-esteem), and social factors (e.g., peer and family relations) may play 

in the association between earlier pubertal timing and increased depression risk in 

adolescence.  

 

The final aim of this thesis was to explore how brain function was associated with irritability 

in adolescence, and how this related to depressive symptoms. Irritability is a core symptom 

of adolescent depression and an early indicator of emotion regulation difficulties. However, 

existing research on irritability typically overlooks the social nature of adolescence. Therefore, 

I worked with young people to design an irritability task that aimed to reflect the experience 

of irritability as a young person today. I then recruited an independent sample of young 

people who underwent a functional MRI scan while performing our novel irritability task. The 

task involved reading a series of irritating scenarios and imagining being in those situations as 

vividly as possible. To validate the task, I first investigated whether patterns of brain activity 

differed between the irritability task and a scan when the brain is at rest (i.e., the participant 

looks at a cross on a screen for the duration of the scan). I found that the patterns of brain 

activity differed across the two conditions, and a brain network involved in cognitive control 

and goal-oriented behaviour was more likely to be occupied during the irritability task. This 

suggests that our novel task may induce a state of mind related to emotion regulation. I also 

found that certain patterns of brain activity were associated with depressive symptoms and 

irritable mood, which may provide insight into how alterations in brain activity could 

contribute to the emergence of depression in adolescence.  

 

Ultimately, the work in this thesis has advanced our understanding of the features of brain 

structure and function that may be associated with depression in adolescence, and how other 

aspects of social behaviour (e.g., irritable mood) relate to mental health difficulties. To further 

develop our understanding, we need to examine these associations over time to distinguish 

the factors that shape positive developmental patterns (e.g., mental wellbeing) and those 

that increase risk for maladaptive trajectories, such as the onset of depression. The 
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overarching aim of this research is to identify youth that diverge from a positive 

developmental trajectory at the earliest stage possible so that we can divert them away from 

ill-health towards wellbeing.  



 

 vi 

Declaration of Originality 

 
I declare that this thesis is my own composition and that it has not been submitted for any 

other degree or professional qualification at this university or any other institution. Parts of 

the work comprising this thesis have been previously published. The included publications are 

my own work, expect where indicated otherwise.  

 

The work presented in Chapter 3 has been published in EClinicalMedicine. Author 

contributions are as follows: XS, NM, LR and HCW conceived and designed the research; XS 

led the formal analysis, and NM and XS were responsible for result interpretation and 

visualisation; XS and NM drafted the manuscript; all authors reviewed the article.  

 

The work presented in Chapter 4 has received an “in principle acceptance” in Developmental 

Cognitive Neuroscience as a Stage 1 Registered Report. The Stage 2 manuscript has been 

submitted for review. Author contributions are as follows: NM and HCW conceived and 

designed the research; NM and JA conducted the statistical analyses; NM drafted the article; 

NM, JA, AES, XS, HC, BC, RMR, ASFK, LR, and HCW contributed to the methodology; all authors 

reviewed the article.  

 

The work presented in Chapter 5 has been submitted for publication and is available as a 

preprint on PsyArXiv. Author contributions are as follows: NM, PL, SZ, SC, LR and HCW 

conceived and designed the research; NM and PL conducted the formal analysis (literature 

review); NM drafted the article; all authors reviewed the article.  

 

 

 

Signed:    Date:     Date: 2nd December 2022 

  

https://www.sciencedirect.com/science/article/pii/S2589537021004855
https://psyarxiv.com/4tn8s/


 

 vii 

Covid-19 Note 
 

The work contained within this thesis was undertaken between April 2020 and November 

2022. When I began my doctoral studies in January 2019, my original PhD project was entirely 

data collection-based and involved recruiting young people with depressive symptoms from 

community and clinical settings in Scotland. Therefore, the first 15 months of my PhD were 

focused on developing a study protocol and preparing an NHS ethics application (IRAS ID: 

274402). We obtained a favourable ethics opinion from the West of Scotland Research Ethics 

Committee (REC) on February 4th, 2020. Recruitment for the study began thereafter but was 

halted on March 16th, 2020, due to a university-wide decision to suspend all empirical studies 

that involved in-person data collection, which remained in place until November 2020. Due 

to the many unknowns surrounding the development of the Covid-19 pandemic, my 

supervisors and I decided to switch the focus of the PhD to working with pre-existing data. 

Thankfully, resources like the Adolescent Brain Cognitive Development (ABCD) Study were 

suited to addressing the original aims of my PhD. Following the lifting of data-collection 

restrictions in November 2020, I began recruitment and data collection for the pilot 

neuroimaging study that comprises Chapters 5-7 of this thesis. 

  



 

 viii 

Acknowledgements 
 
Firstly, I would like to express my sincere thanks to my primary supervisor, Heather Whalley, 

for her guidance and support throughout my PhD. Her kind and calm disposition helped see 

me through difficult points during my studies. I always enjoyed the chats about Highland 

adventures that punctuated our supervision meetings — the fact that this culminated in an 

impromptu supervision at the top of Liathach, Torridon, seems like a very fitting conclusion 

to this journey! I would also like to thank my secondary supervisors, Stephen Lawrie and Alex 

Kwong for their assistance and advice during my PhD. Thanks also to Stella Chan.  

 

Many thanks to all members, past and present, of the Division of Psychiatry at Kennedy 

Tower. I would especially like to thank Judith Allardyce for being so generous with her time 

and expertise — I could not have completed this work without her guidance and support. 

Thank you also to Amelia Edmondson-Stait and Hannah Casey for their patience and help with 

my (many) coding woes. I would also like to thank Aleks Stolicyn, Liana Romaniuk, and Xueyi 

Shen for their expertise and assistance with the statistical analysis in this thesis. Many thanks 

to Nikolaj Krær Høier and Anders Jespersen for their friendship, Scandi vibes, and ample 

supply of caffeine, baked goods, and plants (Anders!) on the 7th floor. Thanks especially to 

Niko for making every day in the office together a joy during the final year of my PhD — your 

friendship made all the difference, tusind tak min ven!  

 

A special thanks to Laura Klinkhamer, firstly for her friendship, and also for being the best 

Open Research partner-in-crime! Founding the Edinburgh branch of ReproducibiliTea 

together has been one of the most rewarding experiences of my academic career and I am so 

proud of the Open Research community that we helped create. I am fortunate to have met 

many wonderful and inspiring people through ReproducibiliTea and the Edinburgh Open 

Research Initiative — thank you for making adopting open research practices a little less 

daunting!  

 

Thank you to the trustees and volunteers at Mental Health Research UK, without whose 

support this doctoral work would not have been possible. Thanks also to the staff at the 



 

 ix 

Clinical Research Imaging Centre for their assistance with our imaging data collection. I would 

also like to thank the participants of our local study and the ABCD Study, as well as the ABCD 

Study co-ordinators. I would like to extend a special thanks to our youth researchers Perrine 

Louvet and Simal Zafar, and to all the other young people that made the research in Chapters 

5-7 of this thesis possible. I learned a great deal from you all.  

 

Attending the Modelling Developmental Change ABCD workshop in July 2021 was the 

highlight of my PhD and introduced me to a wonderful community of bright, curious, and 

generous minds. A special thanks to Kate Mills and Michelle Byrne for organising, and Landry 

Goodgame-Huffman for just being awesome!  

 

Thank you to my science teachers, Denis Maguire and Dan McKenna, for their support during 

my first encounter with the world of research (even if I didn’t know it at the time!) at the BT 

Young Scientist Exhibition 2011. And of course, thanks to Clare Kelly at Trinity College Dublin 

who played a pivotal role in shaping my very early research career and who inspired me to 

pursue a PhD.  

 

Thanks also to my friends and family in Scotland and Ireland, and especially to Kadi Vaher 

whose company during the long library days of our theses write ups made the process a great 

deal easier! Thank you too to Taylor, especially the release of Midnights, for soundtracking 

this thesis.  

 

Of course, tusen tusen takk to Sunniva Bøstrand for accompanying me on this PhD journey — 

I am so proud of us for doing this hard thing together. Here’s to manifesting many more future 

adventures, min skatt.  

 

I am so very lucky to be surrounded by fierce and fabulous women whose “oomph and 

sparkle” has been an unwavering source of support, encouragement, and inspiration over the 

course of my PhD. No words can really do justice how grateful I am for your friendship so I’ll 

end with a heartfelt thanks to Zandie, Anna, Julie, Alice, Aoife, Sarah, Sunniva, Naomi, and 

Line. 



 

 x 

 

Thank you to my dear sister, Aoife, for always being there for me and making me laugh when 

I needed it most. Thanks to my dogs, Lilly and Dubh, for being there from school exams 

through to my PhD thesis. My biggest thanks go to my parents, Erina and Terry, for always 

encouraging me to ask questions and for providing me with every opportunity I could have 

imagined. Your curiosity and sense of adventure in life is my greatest inspiration and I am so 

proud to be your daughter.  

 

Lastly, I would like to express my gratitude to the mountains and seas of Ireland and Scotland. 

There was never a PhD stress that couldn’t be remedied by a jaunt up a hill or a dip in the sea! 



 

 xi 

Publications 

 
Publications included in this thesis: 

(*joint-first) 

Shen, X.*, MacSweeney, N.*, Chan, S. W., Barbu, M. C., Adams, M. J., Romaniuk, L., McIntosh, 

A.M. & Whalley, H. C. (2021). Brain structural associations with depression in a large early 

adolescent sample (the ABCD Study®). EClinicalMedicine. Open Access Version. 

 

MacSweeney, N., Allardyce, J., Edmondson-Stait, A., Shen, X., Casey, H., Chan, S. W. Y., Cullen, 

B., Reynolds, R., Kwong, A. S. F., Lawrie, S., Romaniuk, L., Whalley, H. C. (in-principle 

acceptance). The role of brain structure in the association between pubertal timing and 

depression risk in early adolescence: A registered report. Developmental Cognitive 

Neuroscience (Stage 2 submitted). 

 

MacSweeney, N., Louvet, P., Zafar, S., Chan, S. W. Y. Kwong, A. S. F., Lawrie, S., Romaniuk, L., 

Whalley, H.C., Keeping up with the kids: Towards a more ecologically valid study of irritability 

in youth depression and its underlying neural circuitry (under review). Preprint Version. 

 
Other publications completed during my doctoral studies  
(*joint-first) 

Saragosa-Harris, N.*, M., Chaku, N.*, MacSweeney, N.*, Guazzelli Williamson, V.*, 

Scheuplein, M., Feola, B., … Mills, K. L. (2022). A practical guide for researchers and reviewers 

using the ABCD Study and other large longitudinal datasets. Developmental Cognitive 

Neuroscience. Open Access Version. 

 

O’Rourke, S., Whalley, H., Janes, S., MacSweeney, N., Skrenes, A., Crowson, S., MacLean, L., 

& Schwannauer, M. (2020). The development of cognitive and emotional maturity in 

adolescents and its relevance in judicial contexts. Scottish Sentencing Council UK. 

Commissioned report. Online Version. 

  

https://www.sciencedirect.com/science/article/pii/S2589537021004855
https://psyarxiv.com/4tn8s/
https://www.sciencedirect.com/science/article/pii/S1878929322000585
http://www.scottishsentencingcouncil.org.uk/media/2044/20200219-ssc-cognitive-maturity-literature-review.pdf


 

 xii 

Achievements and Awards 
 
Winner, Good Research Citizenship Award at the Good Research Practice Awards, University 

of Edinburgh for work with Edinburgh ReproducibiliTea as co-founder and organiser (2022) 

 

Highly Commended, British Neuroscience Association Student Credibility Prizes for open 

research work (2022) 

 

Awardee (Co-I), Student Experience Grant (£5,000), University of Edinburgh, to organise the 

Edinburgh Open Research Initiative and ReproducibiliTea Conference (2022) 

 

Awardee, Guarantors of Brain Travel Grant (£600) to support invited research visit to Prof. 

Christian K. Tamnes’ Research Group, University of Oslo (2021) 

 

Winner, Delegates’ Choice Award, MQ Mental Health Science Summit (£200) for poster 

entitled “Understanding irritability in adolescent depression: Development of a novel fMRI 

task using a co-produced youth-research design” (2021) 

 

Representative, University of Edinburgh, LERU Doctoral Summer School, Trinity College 

Dublin. Theme: Re-evaluating the Role of the Expert (2021) 

 

Awardee (PI), Royal Society STEM Partnership Grant (£3,000) for project entitled “Does our 

biology influence our mood?” in collaboration with Musselburgh Grammar School (2019) 

 

Finalist, University of Edinburgh 3 Minute Thesis Competition, The Whirlwind of Adolescent 

Depression, YouTube Video (2019) 

 

Scholar, Mental Health Research UK Children and Young People PhD Scholarship (£90k) 

  

https://www.leru.org/doctoral-summer-school
https://www.youtube.com/watch?v=gnlJ1gT-UeA


 

 xiii 

Table of Contents 

1 General Introduction ................................................................................................. 1 

1.1 Outline ................................................................................................................................... 1 

1.2 The dynamic world of adolescence ....................................................................................... 1 

1.3 Depression in adolescence .................................................................................................... 2 

1.4 Risk factors for depression — a brief overview ..................................................................... 5 

1.5 The developing brain ............................................................................................................. 9 

1.6 Puberty: The biological catalyst of adolescence ................................................................. 18 

1.7 The adolescent brain and depression: previous research and the current thesis .............. 22 

1.8 Thesis aims........................................................................................................................... 25 

2 ABCD Methods ........................................................................................................ 27 

2.1 Chapter introduction ........................................................................................................... 27 

2.2 The ABCD Study ................................................................................................................... 27 

2.3 ABCD measures ................................................................................................................... 29 

2.4 Overview of key statistical methods ................................................................................... 37 

2.5 Summary .............................................................................................................................. 39 

3 Brain Structural Associations with Depression in Adolescence .................................. 40 

3.1 Chapter introduction ........................................................................................................... 40 

3.2 Abstract ............................................................................................................................... 43 

3.3 Introduction ......................................................................................................................... 44 

3.4 Methods .............................................................................................................................. 46 

3.5 Results ................................................................................................................................. 51 

3.6 Discussion ............................................................................................................................ 58 

3.7 Chapter conclusion .............................................................................................................. 65 

4 The Role of Brain Structure in the Association Between Pubertal Timing and 

Depression Risk .............................................................................................................. 66 



 

 xiv 

4.1 Chapter introduction ........................................................................................................... 66 

4.2 Abstract ............................................................................................................................... 69 

4.3 Introduction ......................................................................................................................... 71 

4.4 Materials and methods ....................................................................................................... 79 

4.5 Data analysis plan ................................................................................................................ 86 

4.6 Pilot analyses ....................................................................................................................... 92 

4.7 Pilot results .......................................................................................................................... 95 

4.8 Main results ......................................................................................................................... 99 

4.9 Discussion .......................................................................................................................... 111 

4.10 Data access ........................................................................................................................ 121 

4.11 Acknowledgements ........................................................................................................... 121 

4.12 CRediT statement .............................................................................................................. 122 

5 Irritability in Adolescent Depression — A Narrative Literature Review ................... 124 

5.1 Chapter introduction ......................................................................................................... 124 

5.2 Abstract ............................................................................................................................. 127 

5.3 Literature review ............................................................................................................... 128 

5.4 CRediT statement .............................................................................................................. 137 

5.5 Chapter conclusion ............................................................................................................ 138 

6 Irritability in Adolescent Depression — Pilot Study Methods .................................. 139 

6.1 Chapter introduction ......................................................................................................... 139 

6.2 Data source ........................................................................................................................ 139 

6.3 Funding and ethics ............................................................................................................. 141 

6.4 Study procedure ................................................................................................................ 141 

6.5 Study materials .................................................................................................................. 142 

6.6 Imaging data pre-processing ............................................................................................. 146 

6.7 Leading Eigenvector Dynamics Analysis (LEiDA) ............................................................... 154 



 

 xv 

6.8 Chapter conclusion ............................................................................................................ 159 

7 Exploring dynamic functional brain networks in adolescent depression using a co-

produced novel irritability task ..................................................................................... 160 

7.1 Chapter introduction ......................................................................................................... 160 

7.2 Introduction ....................................................................................................................... 161 

7.3 Methods ............................................................................................................................ 164 

7.4 Results ............................................................................................................................... 171 

7.5 Discussion .......................................................................................................................... 186 

7.6 Chapter conclusion ............................................................................................................ 192 

8 General Discussion ................................................................................................ 193 

8.1 Chapter Introduction ......................................................................................................... 193 

8.2 Summary of findings .......................................................................................................... 193 

8.3 Limitations, methodological considerations, and future directions ................................. 197 

8.4 Concluding remarks ........................................................................................................... 207 

9 Appendices ........................................................................................................... 209 

10 References ........................................................................................................ 307 

 

  



 

 xvi 

Key Terms  
  

AAL Automated Anatomical Labelling 

ABCD STUDY Adolescent Brain Cognitive Development Study 

ACS American Community Survey  

ADHD Attention deficit hyperactivity disorder 

ARI Affective Reactivity Index 

ASD Autism spectrum disorder 

AT AtlasTrack 

BMI Body mass index 

BOLD  Blood-oxygen-level-dependent 

BRAINAGE Brain age gap estimate 

CBCL Child Behaviour Checklist 

DAIC ABCD Data Analytics and Informatics Centre 

DAWBA Development and Well-Being Assessment 

DEAP Data Exploration and Analysis Portal  

DFC Dynamic functional connectivity 

DK Desikan-Killiany Atlas  

DLPFC Dorso-lateral prefrontal cortex 

DMDD Disruptive mood dysregulation disorder 

DMN Default mode network 

DPL Dynamic BOLD phase-locking matrix 

DS Depressive symptoms  

DTI  Diffusion tensor imaging 

ECC Eddy current correction 

ENIGMA Enhancing NeuroImaging Genetics through Meta-Analysis 

EPI Echo planar imaging 

FA Fractional anisotropy 

FC Functional connectivity 

FD Framewise displacement 



 

 xvii 

FMRI Functional magnetic resonance imaging 

FOV Field of view  

FPN Fronto-parietal network 

GLM Generalised linear model 

HALFPIPE Harmonised Analysis of Functional MRI pipeline 

ICA-AROMA Independent Components Analysis-based Automatic Removal 

of Motion Artefacts  

ICV Intracranial volume 

IRB Institutional Review Board 

IRR Incidence rate ratio 

K-SADS Kiddie Schedule for Affective Disorders and Schizophrenia 

LEIDA Leading Eigenvector Dynamics Analysis 

LME Linear mixed effect model 

MD Mean diffusivity 

MDD Major depressive disorder 

MFQ Mood and Feelings Questionnaire 

MNI Montreal Neurological Institute 

MPFC Medial prefrontal cortex 

NIMH National Institute for Mental Health 

ODD Oppositional defiant disorder 

PDS Pubertal Development Scale  

PHQ-9 Patient Health Questionnaire, depression module 

PL Phase-locking 

PT Pubertal timing 

QA Quality assessment  

QC Quality control  

ROI Region of interest 

RS-FMRI Resting state functional magnetic resonance imaging 

RSN Resting state network 

SEM Structural equation modelling 

SN Salience network 



 

 xviii 

TE Echo time 

TR  Repetition time  

TS Tanner Stage Line Drawings  

WBV Whole brain volume 

YPAG Young Person Advisory Group 

 
  



 

 xix 

List of Figures 
 

Figure 1.1 – The spectrum of depression. .............................................................................................. 2 

Figure 1.2 – Core clinical symptoms of depression (according to the DSM-5). ...................................... 3 

Figure 1.3 — Illustration of cortical thickness measurement. .............................................................. 10 

Figure 1.4 — Neurodevelopmental milestones across the lifespan. .................................................... 12 

Figure 1.5 — Illustration of isotopic (A) and anisotropic (B) water diffusion. ...................................... 14 

Figure 1.6 — The physical and hormonal changes that characterise puberty. .................................... 20 

Figure 2.1 — Map of ABCD Study sites. ................................................................................................ 29 

Figure 2.2 — ABCD Neuroimaging Protocol. ......................................................................................... 31 

Figure 2.3 — Illustration of the Desikan-Killiany (DK) Atlas brain parcellation .................................... 33 

Figure 3.1 — Associations between Major depressive disorder (MDD), depressive symptoms (DS) and 

general measures of cortical and white-matter structures. ........................................................ 52 

Figure 3.2 — P-value plots for associations between depressive symptoms (DS) and measures for 

regional brain regions. ................................................................................................................. 54 

Figure 3.3 — P-value plots for associations between Major depressive disorder (MDD) and measures 

for single brain regions. ................................................................................................................ 55 

Figure 3.4 — Associations between socio-environmental factors and absolute discrepancies of 

caregiver and child reports on depressive symptoms (DS). ......................................................... 57 

Figure 4.1 — Pubertal Development Scale quality checking decision tree at Year 1 ........................... 82 

Figure 4.2 — Effect of pubertal timing on depressive symptoms without considering mediation ...... 87 

Figure 4.3— Effect of pubertal timing on depressive symptoms including mediation of brain 

structure. ...................................................................................................................................... 88 

Figure 4.4 — Pilot results: Cortical and subcortical regions of interest for the pubertal timing ~ brain 

structure association. ................................................................................................................... 95 

Figure 4.5 — Pilot results: Cortical and subcortical regions of interest for the depressive symptoms ~ 

brain structure association. .......................................................................................................... 97 

Figure 4.6 —Main results: Frequencies (N) for parent summary scores from the Pubertal 

Development Scale (PDS). .......................................................................................................... 100 

Figure 4.7— Main results: Incidence Rate Ratios (IRRs) for the association between pubertal timing 

and youth depressive symptoms. .............................................................................................. 102 

Figure 4.8 — Exploratory results: Significant cortical associations with earlier pubertal timing in 

female youth. ............................................................................................................................. 106 

https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867940
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867941
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867944
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867946
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867950
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867950
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867951
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867951
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867953
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867954
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867956
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867956
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867957
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867957
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867958
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867958


 

 xx 

Figure 4.9 — Exploratory results: Mediation paths and statistics for main effect of pubertal timing 

and depressive symptoms, mediated through accumbens area volume. ................................. 108 

Figure 4.10 — Exploratory results: Mediation paths and statistics for main effect of parental 

depression and youth depressive symptoms, mediated through pubertal timing. .................. 109 

Figure 6.1 — HALFpipe Workflow. ...................................................................................................... 148 

Figure 6.2 — An example of the HALFpipe interactive web-based quality assessment (QA) tool for an 

individual participant. ................................................................................................................ 153 

Figure 6.3 — Illustrative description of Leading Eigenvector Dynamics Analysis (LEiDA). ................. 157 

Figure 7.1 — Significance of between-condition differences in phase-locking (PL) state probability 

and duration as a function of k. ................................................................................................. 173 

Figure 7.2 — Boxplots showing the differences in phase-locking (PL) state probability between the 

rest and irritability conditions for all clustering configurations k = 2 to 20. .............................. 174 

Figure 7.3 — Boxplots showing the differences in phase- locking (PL) state dwell time (duration) 

between the rest and irritability conditions for all clustering configurations k = 2 to 20. ........ 175 

Figure 7.4 — Phase-locking (PL) brain states for a clustering configuration of k = 11. ...................... 177 

Figure 7.5 — Repertoire of recurrent phase-locking (PL) states obtained with a clutering 

configuration of k = 11. .............................................................................................................. 178 

Figure 7.6 — Overlap of the 10 non-global phase-locking (PL) states with seven canonical resting-

state networks (RSNs) as per Yeo et al. (2011). ......................................................................... 179 

Figure 7.7 — Phase-locking (PL) state 2 for K = 11, which is characterised by regions of the default 

mode network (DMN). ............................................................................................................... 181 

Figure 7.8 — Phase-locking (PL) state 10 for K = 11, which is characterised by regions of the fronto-

parietal network (FPN). .............................................................................................................. 182 

Figure 7.9 —Dynamic brain states associated with depressive symptoms and irritable mood. ........ 185 

  

https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867961
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867961
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867962
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867962
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867967
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867967
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867968
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867968
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867969
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867970
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867970
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867971
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867971
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867972
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867972
https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120867974


 

 xxi 

List of Tables 

 
Table 3.1 — Sample sizes and demographic features for MDD and depressive symptoms (DS). ........ 51 

Table 4.1 — Hypotheses tested in this registered report. .................................................................... 77 

Table 4.2 — Name and description of study variables used in this registered report. ........................ 80 

Table 4.3 — Model specifications for pubertal timing and depressive symptoms association. .......... 87 

Table 4.4 — Pilot analyses: Model specifications for brain structural measures. ................................ 93 

Table 4.5 — Pilot results: Pubertal timing-brain structure models and associated statistics with 

significant ROI associations. ......................................................................................................... 96 

Table 4.6 — Pilot results: Depressive symptoms ~ brain structure models and associated statistics 

with significant ROI associations. ................................................................................................. 98 

Table 4.7 — Main results: Descriptive statistics for sample. ................................................................ 99 

Table 6.1 — The 18 most highly rated scenarios that were used as stimuli in our irritability task. ... 145 

Table 7.1 —Irritability pilot study: Sample descriptive statistics. ....................................................... 171 

  

https://uoe-my.sharepoint.com/personal/s1889372_ed_ac_uk/Documents/Edinburgh/Thesis/NMacSweeney_thesis_final_proofread_2022_11_30.docx#_Toc120868213


 

 xxii 

Introduction to Thesis  
 

 

Where can it be found again, 

An elsewhere world, beyond 

 

Maps and atlases, 

Where all is woven into 

 

And of itself, like a nest 

Of crosshatched grass blades? 

 

 

- Seamus Heaney (Human Chain, 2010) 
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The burden of depression falls heavily on youth. Adolescence is a peak time for the emergence 

of depressive disorders and the rates of adolescent depression are rising. However, why 

depression is more likely to emerge during this period and who it is most likely to affect, is 

not well understood. Adolescence is also a time of immense biological, psychological, and 

social change — it is an “elsewhere world” that has only recently been appreciated as a unique 

developmental period that bridges childhood and adulthood. The dynamic nature of our 

biology, psychology, and social world during this phase of life render it both a challenging and 

opportunistic area of research. On one hand, unravelling the complex interplay of change 

“where all is woven into and of itself/ like a nest of crosshatched grass blades” is no easy task. 

The changes during adolescence occur on multiple levels (e.g., neuronal, hormonal, 

behavioural) and in a variety of settings (home, school, peer, and parent relationships). 

Conversely, the dynamic nature of this period also creates myriad opportunities to develop 

interventions that target multiple levels of change so that we can create an optimal world in 

which adolescents can thrive.  

 

The advent of neuroimaging techniques has provided unparalleled insight into the structural 

and functional development of the adolescent brain — the cornerstone of the adolescent 

(and human) experience. With 100 billion neurons and 100 trillion synapses, the human brain 

is arguably the most complex biological system in existence. Understanding how the structure 

of the brain — neurons, synapses, and associated cells and molecules — translates to brain 

function and in turn, behaviour, and how this is influenced by biological and environmental 

factors, is the overarching mission of the field of cognitive neuroscience.  

 

To date, the field has developed “maps and atlases” of the human brain as a first step towards 

bettering our understanding of brain structure and function. However, to understand how 

developmental outcomes, especially maladaptive ones like depression, emerge from these 

maps and atlases we must move beyond them. To do so, a holistic framework that studies 

brain development within the transactional interplay of concurrent biological, psychological, 

and social change is needed. Considering this, and the heightened vulnerability to depression 

during adolescence, the overarching aim of this thesis was to contribute to this collective aim 
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by investigating biological and psychosocial factors associated with depression during 

adolescence.  

 

Specifically, the first two aims of this thesis were to use a large developmental cohort study 

to examine how brain structure is associated with the emergence of depression during 

adolescence, and how this relates to other biological factors such as pubertal development. 

Using these data, I first assessed how cortical measures and white matter microstructure 

relate to depression in early adolescence using reports from both caregivers and youth 

themselves. I then examined how earlier pubertal timing is associated with later depression 

risk, and whether certain aspects of brain morphometry mediate this relationship. The third 

and fourth aims of this thesis relate to examining dynamic functional brain networks 

associated with depression during adolescence, and how this is associated with psychological 

factors like irritability. In this pilot study, I first validated a novel fMRI task targeting irritability 

that was co-produced with young people. I then examined how dynamic brain states relate 

to behavioural measures, such as depressive symptoms and irritable mood.  

 

In Chapter 1, I introduce adolescence and the biological, psychological, and social changes 

that characterise this developmental period. I then discuss how these changes are interwoven 

and contribute to the increased risk for the onset of depression during adolescence. Further, 

I discuss the motivation for studying brain structure, function, and pubertal development as 

ways to better our understanding of adolescent depression and identify tractable targets for 

intervention. I also provide an overview of the constructs of interest in the current thesis. In 

Chapter 2, I describe the cohort study used in Chapters 3 & 4 of this thesis: The Adolescent 

Brain Cognitive Development (ABCD) Study®. In Chapter 3, I investigate brain structures 

associated with depression in early adolescence. In Chapter 4, I examine how earlier pubertal 

timing relates to later depression during adolescence, and whether brain structure mediates 

this association. In Chapter 5, I provide a narrative literature review of the neural correlates 

of irritability in adolescence and highlight the need for neuroimaging study designs that 

reflect the social nature of adolescence. I then discuss the motivation for adopting a co-

produced youth-research design for our pilot fMRI study. In Chapter 6, I describe the 

characteristics of our pilot study and the methodology employed. In Chapter 7, I use a data-



 

 xxv 

driven approach to explore the dynamic functional brain networks associated with our novel 

fMRI task, and whether characteristics of these brain states relate to behavioural measures. 

Finally, in Chapter 8, I discuss the main findings of this thesis considering its limitations and 

highlight directions for future work.  
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1 General Introduction 

1.1 Outline 

A substantive body of research has shown that a series of developmental processes 

contribute to the heightened vulnerability to the onset and maintenance of depression during 

adolescence. Specifically, these include genetic risk, neuromaturation, hormonal changes, 

and social development, which interact with environmental factors to confer varying degrees 

of risk. In this chapter, I first describe the period of adolescence before outlining the 

epidemiology of depression during this developmental phase and its associated risk factors. I 

then discuss typical structural and functional brain development, and the neuroimaging 

paradigms used to examine these domains. I also provide an overview of pubertal 

development and how this relates to neuromaturation. Finally, I discuss the evidence that 

links deviations from normative development in these domains to depression during 

adolescence, which provides the rationale for the current thesis. I end this chapter by 

outlining the main aims of this doctoral work.  

 

1.2 The dynamic world of adolescence 

Adolescence, a life phase spanning the ages 10-24, is the developmental period that bridges 

childhood and adulthood (Sawyer et al., 2018). It is characterised by immense biological 

growth and significant social role transitions that allow youth to move away from the security 

of childhood and begin to forge their own identities as adults. In many ways, this state of flux 

mirrors the foundational growth, learning, and neuromaturation that occurs in the first few 

years of life (Shonkoff et al., 2012). The importance of early life experiences in shaping later 

developmental outcomes is widely recognised and has shaped global policy and practices 

(Black & Hurley, 2014). However, it is only in recent years that adolescence has been 

recognised as a second “sensitive period” (Dahl et al., 2018). Like early childhood, the dynamic 

nature of adolescence means that a young person’s life can quickly pivot in both positive and 

negative directions. Thus, this critical period of development is a time when interventions and 

policy changes could have a potent effect and allow young people to put their best foot 
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forward as they enter the world of adulthood. A significant barrier to young people having an 

active and meaningful role in society during adolescence is mental health disorders, such as 

depression. 

 

1.3 Depression in adolescence 

Globally, depression is a leading cause of illness and disability and is associated with 

significant personal, societal and economic costs (Global Burden of Diseases, 2018). 

Depression in adolescence is of particular concern due to its recurrent disease course and 

association with an increased risk for comorbid physical and mental health conditions, as well 

as concurrent and later psychosocial difficulties (Malhi & Mann, 2018). Depression can be 

defined as a variety of mood related symptoms and behaviours that exist along a spectrum 

(see Figure 1.1; Thapar et al., 2022). At one end of this continuum, we have symptoms that 

are a normative response to life events — for example, feeling sad or having concentration 

difficulties is a normal reaction to relationship difficulties or academic stress. These reactions 

are often adaptive and can even enable effective coping. However, as we move further along 

this spectrum, we encounter mood and behavioural states that fall outside normative 

fluctuations, a transition to which is associated with functional impairment and degree of 

coping (Foulkes, 2022; Thapar et al., 2022). 

 

 

Depressive symptoms that do not meet full criteria for major depressive disorder (MDD) are 

referred to as sub-threshold depression/depressive symptoms, which can negatively impact 

Figure 1.1 – The spectrum of depression. Figure taken from Thapar et al., 2022 (Copyright: Elsevier Ltd). 
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quality of life and are a risk factor for a later depressive disorder (Bertha & Balázs, 2013). 

Depressive disorders fall at the other end of the spectrum and are characterised by mood and 

behaviours that are longer lasting and significantly impair daily functioning. Specifically, 

accordingly to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-

5), a diagnosis of MDD is defined by depressed mood (or irritable mood in adolescent MDD) 

that is present nearly every day for most of the day, or a marked diminished interest or 

enjoyment (termed anhedonia) in all, or almost all activities, every day for most of the day, 

for a period of at least 2 weeks. A range of other symptoms accompany these core symptoms 

(see Figure 1.2). To meet diagnostic criteria for MDD, five of these symptoms, including at 

least one cardinal symptom, must be present and interfere with daily life functioning 

(American Psychiatric Association, 2013b). While these diagnostic criteria can be helpful in 

both clinical and research settings, it is evident that depression is a highly heterogenous 

condition (Fried, 2015; Fried & Nesse, 2015).  

 

 

There is a growing appreciation that depression is not a single disorder which has resulted in 

the emergence of research on depression subtypes defined by features such as: primary 

symptoms (e.g., low mood alongside sleep difficulties), age of onset (e.g., adolescence versus 

adulthood), nature of onset (e.g., after a stressful life event), whether it is a single episode or 

recurrent/chronic, and treatment response (Harald & Gordon, 2012). While promising, 

Core clinical symptoms of major depressive disorder 

- Low mood, or irritable mood in adolescents 

- Diminished interest or pleasure in all, or almost all, activities  

- Significant weight loss or gain, or decrease or increase of appetite  

- Insomnia or hypersomnia 

- Psychomotor agitation or retardation 

- Loss of energy or fatigue 

- Excessive feelings of guilt or worthlessness  

- Diminished ability to think or concentrate, or indecisiveness 

- Recurrent thought of death, suicidal ideas, or suicide attempt  

Figure 1.2 – Core clinical symptoms of depression (according to the DSM-5). 
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subtyping depression has not yet revealed differential causes and treatment responses. This 

could be due to several factors including overlapping subtypes — adolescent onset 

depression is more likely to be recurrent, for example — as well as the current tools used to 

measure depression. Existing depression measures have come under increasing scrutiny with 

some researchers, such as Eiko Fried and colleagues, arguing for a radical overhaul of the 

theoretical and methodological foundations of depression measurement so that they reflect 

the developments made in our understanding of depression over recent decades (e.g., the 

importance of depression subtypes) (Fried et al., 2022). Although it is important to 

acknowledge the heterogeneity of depression, and the challenges that are therefore inherent 

to researching depression, the focus of depression within this thesis is not on subtyping 

depression nor examining depressive disorder specifically. Instead, I adopt a dimensional 

approach to studying depression that emphasises symptom severity ranging from low-mild, 

moderate through to severe, a decision that was shaped by the sample characteristics of both 

the cohort study and locally collected sample used in this thesis.  

 

The data used in this thesis comprises youth in the early to mid-stages of adolescence (ages 

9 – 13 years; the ABCD Study sample) as well as the later stages of this developmental period 

(ages 16-20 years; our locally collected sample). A recent large-scale meta-analysis of 

epidemiological studies found that the peak age of onset for depressive disorders is 20.5 years 

(Solmi et al., 2022). Given that ABCD is a population-based rather than a clinical sample, the 

proportion of young people with a diagnosis of MDD is likely to be relatively low. Our local 

study was also a community-based sample that aimed to recruit youth with a range of 

depressive symptoms. Adopting a dimensional approach to the study of adolescent 

depression allows us to capture greater variation in depressive symptoms — an important 

consideration for this age range given that it is a period when the early signs of emotional 

distress are likely to emerge. This can then lay a strong foundation to chart the trajectories of 

depressive symptoms: whether they remit or instead recur and transition from sub-threshold 

depression to a depressive disorder. Importantly, the dynamic nature of adolescence, both in 

terms of biological and social factors, means that it is an ideal window of opportunity in which 

to intervene before depression becomes chronic and young people become embedded in a 

life trajectory with an increased risk for poorer developmental outcomes.  
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1.4 Risk factors for depression — a brief overview 

Although the aetiology of depression remains unclear, there is a relatively good 

understanding of the multiple factors that affect an individual’s risk for depression. Crucially, 

there is no single factor that determines whether a person will develop depression. Rather, it 

is likely that myriad risk factors, each with their own probabilistic risk effect, interact with 

each other over time to determine the degree of depression risk (Boyce et al., 2020). Such 

risk factors operate at the individual-level, the family- and peer-level, and at the population 

level.  

 

1.4.1 Individual-level factors 

Evidence from twin-studies suggests that around 40% of the variance in depression risk is 

accounted for by genetic factors (McIntosh et al., 2019). Recent genome wide association 

studies in adults have identified over a hundred genetic variants, each with a small effect size, 

that contribute to risk for depression. These genes were associated with synaptic structure 

and neurotransmission, especially in prefrontal brain regions (Howard et al., 2019). Genetic 

risk is also important in adolescent depression, especially in terms of symptom severity and 

rate of change (Jami et al., 2022; Kwong et al., 2021). However, a complex gene-environment 

interaction is also at play here because genetic vulnerability to depression is correlated with 

exposure to environmental stressors (Rutter, 2010). This means that individuals with a higher 

genetic risk are more likely to be exposed to social stressors, which thus creates additional 

depression risk. Other aspects of our biology, such as pubertal timing, can place an individual 

at an increased risk for depression. Specifically, youth that begin puberty ahead of their peers 

are more likely to experience depression in adolescence, compared to those that begin 

puberty around the same time as their peers (Ullsperger & Nikolas, 2017). This risk effect is 

likely due to a combination of biological and psycho-social factors and their interaction with 

each other (Pfeifer & Allen, 2021). 

 

There are many other individual-level risk factors associated with depression some of which 

include thinking styles and behavioural traits such as neuroticism (Hakulinen et al., 2015), low 

positive emotionality (Khazanov & Ruscio, 2016), and rumination (Cano-López et al., 2022). 
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Unsurprisingly, these modifiable factors have been the focus of psychological interventions 

for depression. Moreover, a number of comorbid mental and physical health difficulties may 

increase risk for depression such as: a history of anxiety (Rice et al., 2017) and irritability 

(Vidal-Ribas & Stringaris, 2021) in childhood, a diagnosis of a neurodevelopmental disorder 

(Hollocks et al., 2019; Meinzer et al., 2014) (e.g., attention deficit hyperactivity disorder 

(ADHD) and autism), a history of a chronic physical illness involving the central nervous system 

(Pinquart & Shen, 2011) (e.g., migraine or epilepsy), obesity (Rao et al., 2020) and sleep 

disruption (Marino et al., 2021). Like genetic factors, the variance in depression risk explained 

by each of these risk factors is small, and some of these associations (e.g., sleep disturbance 

and obesity) may be bidirectional or explained by confounding factors (Rao et al., 2020). 

 

1.4.2 Family-level and peer-level risk factors  

Having a family history of depression is one of the most common risk factors for depression. 

Indeed, approximately 40% of individuals who have a parent with depression will develop 

depression themselves, and this risk is greatest for those with a history of multi-generational, 

chronic, and early-onset depression (Maciejewski et al., 2018). The transmission of 

depression across generations is likely due to a combination of genetic and environmental 

mechanisms, such as offspring being exposed to current parental depression (McAdams et 

al., 2015). Importantly, there are a number of resilience-promoting factors that can mitigate 

this risk many of which pivot around strong social connectedness — high quality relationships 

with other family members and friends, and participation in school and sporting activities 

(Collishaw et al., 2016; Stein et al., 2014). On the other hand, negative social experiences have 

been associated with later adolescent depression. These social stressors often relate to early 

life adversities (LeMoult et al., 2020; Norman et al., 2012), such as neglect, abuse, stressful 

life events (e.g., death of loved one or experiencing a serious illness), bullying (Moore et al., 

2017), and social isolation (Achterbergh et al., 2020). Although there has been much research 

recently on the association between adolescent social media use and depression, findings are 

currently inconclusive suggesting that although there may be some benefits (e.g., increased 

perceived social support), they are accompanied by risks, such as damaging social 

comparison, cyberbullying, and addiction (Ivie et al., 2020).  
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1.4.3 Population-level risk factors 

A common thread linking the social stressors mentioned above is poverty and social 

deprivation, which are undeniably the most widely studied community-level stressors 

associated with depression (Stirling et al., 2015). Individuals who grow up in poverty or in 

neighbourhoods with a high crime rate, are homeless, or are a refugee or displaced due to 

war, are at a much higher risk for developing psychiatric disorders, including depression 

(Kessler et al., 2010). A recent longitudinal randomised control trial by Sheridan et al. (2022) 

that used data from the Bucharest Early Intervention Project, demonstrated the causal impact 

of early deprivation (in this case, institutional care in early childhood) on cortical brain 

development across middle childhood and adolescence, particularly in prefrontal regions and 

in white matter tracts connecting prefrontal and parietal regions (Sheridan et al., 2022). These 

findings provide a possible neurobiological explanation for the enduring impact of exposure 

to adversity early in life on multiple developmental outcomes, such as increased risk for 

psychopathology. 

 

Although a different line of research, it is important to note the almost global experience of 

the Covid-19 pandemic in 2020-21, during which the prevalence of depression and anxiety in 

young people doubled (especially in older adolescents and females), compared with pre-

pandemic estimates (Racine et al., 2021). These stressors were found to disproportionally 

affect minority ethnic/racial and gender/sexuality groups, which in part may be related to 

racism and peer victimisation, and the increased social deprivation and stress that often 

accompanies such prejudices (Amos et al., 2020). Moving forward, it will be interesting to 

examine the impact of a stressful life event like a global pandemic on the developmental 

trajectories of children and young people today. Although there are several challenges in 

addressing such a research question (e.g., varying Covid-19 restrictions within countries, 

disruption of data collection, and the differential impact of Covid restrictions on family life), 

cohort studies like ABCD continued to collect data during and after the pandemic, which will 

allow the prospective longitudinal investigation of a natural experiment like Covid-19.  

 



1| General Introduction 

 8 

1.4.4 Linking risk factors to biology  

Together, these separate findings highlight that many risk factors operate cumulatively to 

exert deleterious effects on adolescent mental health outcomes. However, despite this 

evidence, most research has tended to examine these risk factors independently. It has been 

suggested that there is great promise in a multi-level integrative approach that combines 

epidemiological and aetiological research to identify modifiable risk factors that can prevent 

the onset of youth mental health problems. These can then be used as treatment targets for 

youth already experiencing difficulties as well as in prevention and intervention efforts (Allen 

& Dahl, 2015; Pfeifer & Allen, 2021). To this end, research should aim to move beyond 

describing these risk factors and instead attempt to unravel the developmental and 

neurobiological mechanisms that may transmit the effects of these myriad risk factors to 

depression during adolescence.  

 

One next step for research is to thus investigate how features of the developing adolescent 

brain relate to the emergence of depression and understand how risk factors such as early 

pubertal timing and irritable mood may contribute to depressive problems during this period. 

Research from large-scale neuroimaging studies have demonstrated robust brain structural 

alterations in adult depression. However, the temporal origins of these morphometrical 

differences earlier in development remain unclear. Adolescence has a biological beginning 

with the onset of puberty, an event that is infused with significance for mental health risk. 

The increased vulnerability to internalising difficulties from puberty onwards, especially for 

females, paired with the substantive body of evidence linking earlier pubertal timing and 

increased risk for depression, highlight the potential prominent role of puberty in advancing 

our understanding of the aetiology of adolescent depression. Nonetheless, the role of brain 

structure in understanding the association between earlier pubertal timing and increased risk 

for depression is not well understood. In addition to biological factors, irritable mood is a 

hallmark of adolescent depression and an early sign of emotion regulation difficulties. 

However, existing research on the neural correlates of irritability typically overlook the social 

nature of adolescence. Considering this, the focus of this thesis will be on examining how the 

adolescent brain, and its association with pubertal timing and irritability, relate to depression 

risk during this key developmental period.  
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1.5 The developing brain  

Animal studies provided the first evidence that early in development, the brain undergoes a 

period of synaptic proliferation, whereby there is a deluge of synapse formation such that the 

synaptic density (number of synapses per unit volume of brain tissue) is markedly higher than 

the adult brain (Lund et al., 1977; Rakic et al., 1986). We see a similar pattern in humans — 

brain size increases four-fold between birth and preschool age, and is approximately 90% of 

adult brain volume by the age of six years (Stiles & Jernigan, 2010). The brain then undergoes 

a protracted period of synaptic pruning during childhood and adolescence (Huttenlocher & 

Dabholkar, 1997), which relates to changes in grey matter (brain tissue containing the 

neuronal cell bodies), white matter (brain tissue comprising myelinated nerve fibres), as well 

as functional reorganisation (Stiles & Jernigan, 2010). Importantly, these changes relate to 

developmental milestones in behaviour, such as the development of motor skills (Hadders-

Algra, 2018) and higher-order cognitive functions, like theory of mind (Richardson et al., 

2018). 

 

The emergence of neuroimaging methods, such as magnetic resonance imaging (MRI), has 

equipped researchers with an invaluable tool to advance our understanding of structural and 

functional brain development. MRI allows the in vivo quantification of myriad brain properties 

in a non-invasive manner (Lerch et al., 2017). Here, l provide an overview of neuroimaging 

methods used to quantify brain structure and function and discuss the associated literature 

on typical structural and functional brain development during adolescence. This will help 

situate our understanding of how deviations from typical development can relate to 

depression during adolescence.  

 

1.5.1 Grey matter development during adolescence 

Structural MRI can be used to measure aspects of brain morphometry, including cortical and 

subcortical volume, cortical thickness, surface area, and sulcal depth. Methods used to 

measure cortical volume vary across software tools and are usually voxel- (e.g., FSL; Jenkinson 

et al., 2012) or surface-based (e.g., FreeSurfer; Dale et al., 1999; Fischl et al., 2002) 

approaches. The former involves counting the number of voxels in the brain (or in a particular 
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brain structure). On the other hand, the surface-based approach, which is used in the ABCD 

Study, calculates the volume inside the pial surface (the border between cortical grey matter 

and cerebrospinal fluid) minus the volume inside the white surface (the boundary between 

grey matter and white matter) minus the tissue volume (voxel count) of subcortical areas. 

Cortical thickness and surface area are the substrates of cortical volume. Cortical thickness is 

measured by calculating the vertex-wise closest distance between the white and pial surface 

(See Figure 1.3; Fischl & Dale, 2000). The measurement of cortical surface area is based either 

on the white surface or pial surface, which is mapped onto a template brain (Chen et al., 

2012). The amount of expansion or contraction needed for an individual’s brain to map 

successfully onto the template brain is used as a measure of the vertex-wise cortical surface 

area. Finally, sulcal depth, an indicator of the shape of the cortical surface, is defined as the 

distance between the central cortical surface and its convex hull relative to a mid-surface that 

crosses the cortical surface (Fischl et al., 1999; Yun et al., 2013).  

 

Figure 1.3 — Illustration of cortical thickness measurement. Cortical thickness is the vertex-wise closest distance 
between the white and pial surface of the brain. GM = grey matter; WM = white matter; CSF = cerebrospinal 
fluid. Figure created with BioRender.com. 

 

Longitudinal developmental neuroimaging studies have made a remarkable contribution to 

our understanding of grey matter development across childhood and adolescence. Together, 

this work has shown that grey matter changes are non-linear and vary across brain regions 

(for recent review see Norbom et al., 2021). Early longitudinal work from the National 

Institute of Mental Health in the US reported that cortical volume development in the first 

two decades of life followed an inverted U-shaped trajectory, with frontal and parietal regions 
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reaching peak volume in early adolescence (around age 12 years) while the volume of 

temporal regions peaked later in mid-adolescence (Giedd et al., 1999; Gogtay et al., 2004; 

Lenroot et al., 2007; Raznahan et al., 2011). However, more recent work in independent 

longitudinal samples (aged 8 to 30 years (N = 391, scans = 852) and 7 to 23 years (N = 135, 

scans = 202) found that cortical volume decreases monotonously in a non-linear manner 

across childhood and adolescence. These results suggest that cortical volumetric reductions 

begin much earlier than previously reported (Mills et al., 2016; Wierenga et al., 2014).  

 

As mentioned, cortical thickness and surface area give rise to cortical volume. However, these 

morphometric features show a degree of genetic distinction (Winkler et al., 2010) and follow 

different developmental trajectories (Lyall et al., 2015; Tamnes et al., 2017; Wierenga et al., 

2014). Like changes in the field’s understanding of cortical volume, cortical thickness is also 

considered to peak much earlier in development (i.e., early childhood) (Lyall et al., 2015) than 

previously thought (Raznahan et al., 2011), and then follow a monotonic decreasing trajectory 

throughout mid-childhood, adolescence, and beyond (Frangou et al., 2022; Tamnes et al., 

2017; Vidal-Pineiro et al., 2020; Wierenga et al., 2014). Further, cortical thinning 

demonstrates spatiotemporal variation across brain regions with association cortices 

demonstrating a more protracted period of maturation compared to sensory regions 

(Norbom et al., 2021; Tamnes et al., 2017). 

 

Cortical surface area also exhibits this pattern of development whereby sensory areas expand 

greatly in the first two years of life (Li et al., 2013), which is followed by the continued 

expansion of higher-order cortical regions that peak in late-childhood/early adolescence 

before stabilising by mid-adolescence, and slightly decreasing thereafter (Ducharme et al., 

2016; Tamnes et al., 2017; Wierenga et al., 2014). Several neurobiological processes have 

been put forward to explain the developmental patterns in cortical thinning and surface area 

seen in MRI studies, including reorganisation of dendritic arbour and increased intracortical 

myelination (Natu et al., 2019; Patel et al., 2019). Importantly, the observed morphometric 

development is likely the product of several overlapping neurobiological mechanisms 

(Norbom et al., 2021). Although the direct study of these cellular processes is difficult due to 

the small number of post-mortem histological studies in this age range (Hagler et al., 2022), 
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emerging brain transcriptomic work (Patel et al., 2020) and longitudinal research focused on 

individual differences in neuromaturation (albeit requiring samples with thousands of 

individuals) (Marek et al., 2022) may help elucidate the neurobiological processes 

underpinning the observed MRI findings (Norbom et al., 2021). 

 

Recent collaborative work on brain charts for the human lifespan (Bethlehem et al., 2022) has 

offered insight into the neurodevelopmental milestones across the lifespan (see Figure 1.4), 

which will undoubtedly be a valuable resource for future research.  

 

 

 

Figure 1.4 — Neurodevelopmental milestones across the lifespan. This figure is a graphical summary of the 
findings from Bethlehem et al. (2022). The normative trajectories of the median (50th centile) for each global MRI 
phenotype as a function of age (log-scaled) are shown. Circles depict the peak rate of growth milestones for each 
phenotype. Triangles depict the peak volume of each phenotype. Figure taken from Bethlehem et al. (2022) and 
figure caption adapted from the original paper.  

 

The work by Bethlehem and colleagues (2022) suggests that subcortical brain volume 

demonstrates an overall non-linear increase across childhood and adolescence but has a later 

volumetric peak in mid-adolescence compared to cortical volume (mid-childhood). However, 

there are regional and sex associated differences in the developmental patterns of subcortical 

brain areas. For example, findings from an international collaborative project (Herting et al., 

2018) comprising three independent longitudinal datasets, suggest that the volume of 

subcortical regions related to sensory, motor, and cognitive function (e.g., caudate, thalamus, 
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putamen, and nucleus accumbens) decreases subtly across this developmental period, while 

amygdala volume demonstrates a modest increase. 

 

Regarding sex differences, males were found to demonstrate a steeper increase in amygdala 

volume compared to females, while females showed a decrease in nucleus accumbens and 

putamen volume but males showed no or little change across this age range (Herting et al., 

2018). Although these results are mostly consistent with previous work (Lenroot et al., 2007; 

Raznahan et al., 2014; Wierenga et al., 2018), some studies have found conflicting results, 

such as minimal change or decrease in amygdala volume across adolescence (Dennison et al., 

2013; Wierenga et al., 2018), and an increase in putamen volume (Wierenga et al., 2018). 

Further, even within the collaborative study by Herting and colleagues (2018), inconsistencies 

were found across samples in terms of the pattern of change (i.e., whether a linear, quadratic, 

or cubic model best fitted the development trajectories of these brain regions), which may be 

due to differences in population characteristics, sampling strategies and scanning protocols. 

Together, these findings underscore the need for a “team-science” approach to 

developmental science (e.g., harmonised study protocols, where possible, and analysis 

pipelines) (Zanolie et al., 2022) as well as a shift in perspective to focus on the pattern (i.e., 

stability/rate and direction) of change rather than trying to fit a specific model term (Herting 

et al., 2018). 
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1.5.2 White matter development during adolescence 

Diffusion tensor imaging (DTI) measures the diffusivity of water molecules within brain tissue, 

providing insight into the white matter microstructure and structural connectivity of the 

brain. Unlike grey matter, which has predominantly isotropic water diffusion (i.e., water 

diffusion occurs equally in all directions (see Figure 1.5a), white matter tracts have anisotropic 

diffusion, whereby water diffusion occurs along the direction of the fibre (see Figure 1.5b). 

From this measurement of the restricted diffusion of water molecules, certain scalars can be 

derived such as mean diffusivity (MD) and fractional anisotropy (FA). MD refers to the average 

amount of diffusion along the three main diffusion axes (
𝜆1+ 𝜆2 + 𝜆3

3
). FA is a measure of the 

degree of diffusion in the principal direction compared to the two orthogonal directions and 

is therefore a scalar value between 0 (i.e., equal diffusion in all directions) and 1 (i.e., diffusion 

occurs in one direction only).  

 

Up until relatively recently, higher FA values and lower MD values were thought to reflect 

greater white matter density, with some known exceptions at crossing white matter fibres 

(e.g., at the junction of the corpus callosum and corona radiata) (Tuch et al., 2003), where this 

interpretation was recognised as problematic. Importantly, the biophysical underpinnings of 

Figure 1.5 — Illustration of isotopic (A) and anisotropic (B) water diffusion. 
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these white diffusion measures are influenced by factors such as fibre diameter, fibre density, 

myelination and membrane permeability (Beaulieu, 2002). This biophysical complexity has 

gained more attention in recent years and highlighted the possible oversimplified 

interpretation of what we can infer about the “integrity” of white matter microstructure from 

these DTI measures (Tamnes, Roalf, et al., 2018), with some researchers arguing against the 

use of this term entirely (Jones, et al., 2013). While more advanced diffusion MRI methods, 

such as neurite orientation dispersion and density imaging (NODDI; Zhang et al., 2012), were 

beyond the scope of the current thesis, these techniques can provide more fine-grained detail 

about white matter microstructural properties and will be important for research going 

forward.  

 

Although the precise neurobiological mechanisms that give rise to DTI metrics are not fully 

understood, a substantive body of research has shown widespread increases in white matter 

volume during childhood and adolescence, suggesting increased myelination and axonal 

packing (for a recent review see Lebel & Deoni, 2018). This white matter microstructural 

maturation is thought to serve the development and refinement of higher-order cognitive 

processes (e.g., inhibitory control) (Simmonds et al., 2014). However, there is a paucity of 

longitudinal research and findings from cross-sectional studies have been inconsistent 

(Goddings et al., 2021). Nonetheless, there is evidence to support the hypothesis that FA 

increases and MD decreases across childhood and adolescence, before plateauing by young 

adulthood. Like grey matter development, these microstructural changes are thought to be 

non-linear (Lebel et al., 2019; Lebel & Deoni, 2018; Pohl et al., 2016). 

 

1.5.3 Functional brain development during adolescence  

Functional MRI (fMRI) quantifies hemodynamic changes in the brain via a blood-oxygen-level-

dependent (BOLD) signal, which is used as a proxy measure of brain activity with temporal 

and spatial resolution in seconds and millimetres, respectively. fMRI is used to examine 

fluctuations in brain activity during specific tasks (e.g., working memory or reward processing 

tasks) or while the brain is at rest, which is known as resting-state fMRI. Within the domain 

of resting-state fMRI, which is the perspective taken to study brain function in the current 

thesis, functional connectivity (FC) is the most common property of the brain analysed. 
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Resting-state FC refers to patterns of co-activation in different brain regions at rest and is a 

measure of the correlation of activity in distinct brain areas over time (Friston, 2011).  

 

From this work, parcellations of the brain as a dynamic system of functionally distinct but 

complementary networks have emerged (e.g., Yeo et al., 2011). Due to their role in typical 

and atypical development, some of the most widely studied brain functional networks 

include: 1) the default mode network (DMN; which includes the ventromedial prefrontal 

cortex, posterior cingulate cortex, and precuneus) and plays a key role in self-directed 

thought, including introspection and autobiographical memory (Andrews-Hanna et al., 2014); 

2) the fronto-parietal network (FPN; which consists of the dorsolateral prefrontal cortex and 

posterior parietal cortex) and supports goal-directed behaviour, such as cognitive control and 

decision making (Zanto & Gazzaley, 2013); and 3) the salience network (SN; comprising the 

insula and dorsal anterior cingulate cortex) and is involved in attending to salient stimuli in 

one’s environment and supporting the response to such stimuli by relaying information 

between the DMN and FPN (Corbetta et al., 2008). 

 

Historically, brain function has been studied from a static perspective, in which an average FC 

measure is calculated across the entire time-series of the resting-state scan. While this 

approach has greatly developed the field’s understanding of the functional connectome (i.e., 

the brain’s collective set of functional connections) (Biswal et al., 2010; Yeo et al., 2011), static 

FC methods do not capture the instantaneous waxing and waning of brain network activity 

over time (Iraji et al., 2021). The past decade has thus seen an emphasis on developing 

methods that capture the inherent dynamic nature of functional brain networks, termed 

dynamic FC (dFC; Cabral, Kringelbach, et al., 2017; Calhoun et al., 2014). Although many 

different methods comprise this line of research, such as the sliding window approach (Allen 

et al., 2014; Handwerker et al., 2012), co-activation pattern analysis (Karahanoğlu & Van De 

Ville, 2015; Liu et al., 2013; Tagliazucchi et al., 2012), and phase-coherence pattern analysis 

(Cabral, Vidaurre, et al., 2017; Glerean et al., 2012; Hellyer et al., 2015), these studies have 

collectively shown that brain activity involves time-varying, reoccurring, configurations of the 

coupling and uncoupling of brain regions. These spatiotemporal patterns have revealed 

important information that can assist our understanding of the processes underlying typical 
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and atypical behaviour (Cabral, Vidaurre, et al., 2017; Iraji et al., 2021; Sakoğlu et al., 2010; 

Zalesky et al., 2014). 

 

Indeed, studying the brain through a network or systems lens is important from a 

developmental perspective given that disruptions to widespread brain connections are 

strongly associated with psychopathology (Vanes & Nosarti, 2022; Vértes & Bullmore, 2015). 

Although there is a paucity of longitudinal research on typical functional development (Ernst 

et al., 2015), relative to how this is disrupted in atypical development (e.g., mental health 

disorders), the extant evidence suggests that brain function becomes more integrated and 

efficient across development (Bassett & Sporns, 2017; Ernst et al., 2015; Kundu et al., 2018). 

There seems to be a general shift from “local” (i.e., anatomically proximal) connections, which 

dominate during childhood and early adolescence, to a more “distributed” functional 

architecture from young adulthood onwards, whereby distal connections strengthen (Edde et 

al., 2021; Fair et al., 2009). This refinement of the brain’s functional architecture is thought to 

support the development of cognitive processes, such as emotion regulation and inhibitory 

control (Ernst et al., 2015). These long-range connections comprise many of the known resting 

state networks (e.g., DMN, FPN, SN) and research suggests that regions within these networks 

become more connected across development. For example, a large cross-sectional study by 

Truelove-Hill et al. (2020) found an increase in the connectivity within several networks across 

adolescence such as the DMN, FPN, and SN (Truelove-Hill et al., 2020). Longitudinal work also 

provides evidence that connectivity between functionally-related brain regions strengthens 

during development, such as the subcortico-subcortical connections (e.g., between the 

hippocampus, amygdala, nucleus accumbens and putamen) and cortico-cortical connections 

(e.g., ventral anterior cingulate, dorsal anterior cingulate, frontal medial, and subcallosal) (van 

Duijvenvoorde et al., 2019). 

 

While the existing research broadly supports the idea that within-network connections 

strengthen across development, our understanding of between-network connectivity is less 

clear. Some research suggests that functional networks become more segregated over time, 

such that networks involved in affective-motivational processes (e.g., fronto-limbic 

connections) function in an increasingly independent manner (Fareri et al., 2015; van 
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Duijvenvoorde et al., 2016, 2019). However, work by Marek et al. (2015) suggests there is an 

increase in between-network connectivity across adolescence (as well as a concurrent 

decrease in within-network connectivity) (Marek et al., 2015). 

 

Taken together, these findings highlight the complex nature of structural and functional brain 

development during adolescence and underscore the need for further work in this area. The 

multi-modal nature of the methods employed in the current thesis make a direct and timely 

contribution to this body of research. Before discussing how brain structure and function 

relate to depression during adolescence, our attention now turns to the key biological event, 

or rather the series of events, that propel a young person away from childhood into the flux 

of adolescence — puberty.  

 

1.6 Puberty: The biological catalyst of adolescence  

Although puberty can be regarded as a biological event, it is infused with personal and social 

significance. The surge in hormones that characterise the beginning of adolescence play a 

central role in a series broader biological, psychological, and social changes that prepare a 

young person for reproductive maturity (Crone & Dahl, 2012). Alongside the physical changes 

typically associated with puberty (see Figure 1.6a), this period of development is also 

characterised by changes to motivation and desires, changes in sleep patterns and circadian 

rhythm, as well as myriad other social, behavioural and emotional changes, such as influential 

peer relationships and romantic relationships (Andrews et al., 2021; Crone & Dahl, 2012).  

 

From a biological perspective, as illustrated in Figure 1.6b, pubertal development consists of 

two phases: adrenarche and gonadarche, which are triggered by the hypothalamic-pituitary-

adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, respectively (for reviews see 

Abreu & Kaiser, 2016 and Crone & Dahl, 2012). Adrenarche represents the earliest signs of 

pubertal development, usually occurring between the ages 6-10 years (earlier for females) 

and is characterised by the increased secretion of the androgen, dehydroepiandrosterone 

(DHEA) and its sulphate (DHEAS), from the zona reticularis of the adrenal gland (Biro et al., 

2014). DHEA levels continue to increase until the early 20s and are responsible for the 
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development of a number of secondary sex characteristics including, pubic hair growth and 

changes in body odour and skin features (e.g., acne) (Havelock et al., 2004). 

 

The second phase of pubertal development, gonadarche, also occurs earlier in females, 

typically between the ages of 9-14 years, while the onset for males is usually between 10-15 

years of age (McAnarney, 1992). Gonadarche involves the production of sex steroid hormones 

(gonads) such as oestrogen and testosterone, via the pulsatile release of gonadotrophin-

releasing hormone (GnRH) from the hypothalamus (during sleep), which then stimulates the 

release of follicle stimulating and lutenising hormones (FSH and LH) from the pituitary gland. 

The HPG axis is first active in the prenatal and early postnatal life but is then made dormant 

by inhibitory inputs from the hypothalamus. Although the precise mechanisms that re-

awaken the HPG axis are not fully understood, it is thought that it arises through interactions 

with neural systems implicated in metabolism, energy storage, and sleep regulation. 

Important agents identified include the hormone leptin and kisspeptins, a family of 

neuropeptides (Abreu & Kaiser, 2016). Testosterone and oestrogen enable reproductive 

maturity and are responsible for the development of additional sex characteristics, such as 

testicular development and voice deepening in males, and breast development and 

menstruation in females. A third neuroendocrine axis that is part of pubertal maturation is 

the release of growth hormone (GH) from the pituitary gland, which is responsible for the 

rapid physical growth that characterises adolescence. 



1| General Introduction 

 20 

 

Figure 1.6 — The physical and hormonal changes that characterise puberty. A) Physical changes associated with 
puberty for males and females; B) Hormonal changes that occur during puberty. DHEA = 
Dehydroepiandrosterone; FSH = Follicle stimulating hormone; LH = Lutenising hormone; GH = Growth hormone.  

  

The gold standard measurement of pubertal development is via physical examination by a 

clinician, as self-reported pubertal development measures can be subject to biases (Shirtcliff 

et al., 2009). In research settings, especially in large scale studies like ABCD, a physical 

examination may not always be possible. Therefore, pubertal development is frequently 

assessed via self- (or parent-) report, such as the Pubertal Development Scale (PDS; Petersen 

et al., 1988) or the Tanner Scale (Marshall & Tanner, 1969, 1970), and also via hormonal 

measures (Goddings et al., 2019). It is important to note that questionnaire-based 

assessments of puberty (e.g., PDS) can conflate three distinct (but related) neuroendocrine 

processes, a nuance that should be acknowledged when attempting to unravel how pubertal 

development relates to other aspects of adolescence, such as brain development and mental 

health risk.  

 

Although all individuals progress through the same stages of puberty, there are marked 

individual differences in the timing and pattern (i.e., tempo) of pubertal maturation. There 

are a number of factors that are associated with pubertal onset including genetics, nutritional 

status, adoption, and emotional well-being (for a recent review see Mancini et al., 2022). 
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Indeed, findings from genetic studies suggest that 50-80% of variance in pubertal timing may 

have genetic underpinnings (Abreu & Kaiser, 2016). Further, the decrease in the average age 

of menarche in the US and some parts of Europe between the mid-19th and mid-20th century 

is thought to be linked to general improvements in health, nutrition, and living conditions 

(Wyshak & Frisch, 1982). However, the heterogenous research methods employed in these 

earlier studies limits the generalisability of such findings to other populations, including 

present day youth. This underscores the need for further longitudinal research using more 

recent data and ideally involving studies with harmonised indices of pubertal development 

across diverse samples. Crucially, it is the variation in pubertal timing, rather than pubertal 

stage, that is associated with psychopathology during adolescence (Graber, 2013; Ullsperger 

& Nikolas, 2017). Pubertal timing can be defined as pubertal development relative to same- 

age, same-sex peers, such that an individual can be categorised as developing ahead (early), 

in-line (on-time) or after (late) their peers. Given that this thesis is focused on investigating 

how features of the adolescent brain relate to depression during this period, the role of 

pubertal maturation in this association will be examined through the lens of pubertal timing.  

 

Beyond age-related changes, research has shown that pubertal development impacts 

neuromaturation (Vijayakumar et al., 2018). Regarding brain structural development, earlier 

pubertal timing (measured via physical and hormonal measures) has been associated with 

reduced cortical thickness and cortical volume in the prefrontal cortex, the cingulate cortex, 

and the temporal lobe (Koolschijn et al., 2014; Pfefferbaum et al., 2016). These brain regions 

are involved in cognitive processes known to undergo significant development during 

adolescence such as cognitive control, decision making, and emotion regulation. While 

advanced pubertal maturation has been associated with subcortical changes, such as 

increased amygdala and hippocampal volume and decreased volume of striatal regions, there 

is a dearth of research examining pubertal timing and brain structural development 

specifically (Goddings et al., 2019). Further, findings on the association between white matter 

microstructure and pubertal timing have been inconsistent, although there is some degree of 

support across studies for a positive association between pubertal timing and FA (see 

Vijayakumar et al. (2018) for a review).  



1| General Introduction 

 22 

Research on how pubertal development relates to functional brain development is an 

emerging line of research. Given that examining functional connectivity and pubertal timing 

in the context of adolescent depression was beyond the scope of the current thesis, the 

associated literature is not reviewed extensively here. In brief, of the handful of fMRI studies 

that do exist, most have focused on reward processing and socio-emotional development 

related regions (e.g., striatal regions and the amygdala) given the significant maturation of 

these domains during adolescence (Andrews et al., 2021). Findings from these studies have 

been mixed with some reporting increased activation in striatal regions and decreased 

activation of the amygdala in more pubertally advanced youth, while others have found the 

opposite pattern of results, or no puberty-related activation changes (for recent review see 

Galván, 2021).  

 

In conclusion, it is evident from the existing literature that pubertal and brain development 

interact in a complex manner during adolescence, and much more longitudinal work is 

needed to better understand this association. A major challenge in this area of research is the 

multitude of methods used to assess pubertal development, which may in themselves 

contribute to the heterogenous findings reported. Importantly, multi-verse analysis 

approaches have gained popularity in recent years (Barendse et al., 2021) and will be key to 

producing robust and reproducible findings in the future.  

 

1.7 The adolescent brain and depression: previous research and the current 

thesis 

The research discussed to date undoubtedly shows that adolescence is a time of immense 

biological change. It is therefore unsurprisingly that deviations from typical biological 

development have been the focus of research on the vulnerability to mental health disorders, 

such as depression, during adolescence. However, the research undertaken to date has been 

limited in several ways.  

 

Firstly, it is only in recent years that we have had sufficiently powered neuroimaging studies 

to begin to understand how features of the adolescent brain relate to the emergence of 
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depression during this period. Large population-based studies (N = >1,000), such as work from 

the ENIGMA consortium (Enhancing NeuroImaging Genetics through Meta-Analysis) have 

demonstrated widespread brain structural alterations in adult MDD. For instance, lower 

hippocampal volume, decreased cortical thickness in frontal areas (Schmaal et al., 2017), and 

differences in white matter microstructure in fronto-limbic and fronto-thalamic tracts (van 

Velzen et al., 2020) have been reported in MDD cases compared to controls. However, since 

these studies were conducted in adults, it is not possible to ascertain whether the observed 

brain structural deviations are a cause or consequence of depression. Although there have 

been some recent efforts to examine the brain structural associations with depression in 

adolescence, which report lower total surface area and regional reductions in frontal regions 

in depressed cases, findings have been inconsistent, and this work has largely comprised older 

adolescent cases (≥ 16 years) (Arnone et al., 2012; Kempton et al., 2011; Lai, 2013; Reynolds 

et al., 2014; Serafini et al., 2014; Shad et al., 2012). As a result, the earlier origins of 

depression-related brain structural alterations in adolescence remain understudied, likely 

owing to a lack of large neuroimaging studies comprising adolescent samples. Longitudinal 

work (involving at least three distinct timepoints of data) is needed to chart brain 

development alongside depression trajectories across adolescence so that we can identify 

multi-factorial profiles that confer risk for or promote resilience to depression over time. 

However, until such data becomes available through studies like ABCD, a first step in achieving 

this goal is to examine the origins of depression in early adolescence, which will provide a 

strong foundation upon which to base future longitudinal work.  

 

A second key limitation of existing research within the field to date is the examination of risk 

factors independently. While this approach may be due to the targeted focus of independent 

studies in the past, as opposed to the broad scope of cohort studies like ABCD, it is important 

that our study designs reflect the dynamic and interactive world of adolescence. Although a 

large body of research has demonstrated that earlier pubertal timing is associated with a 

heightened vulnerability to depression during adolescence (Conley et al., 2012; Ge & 

Natsuaki, 2009; Hamilton et al., 2014; Pfeifer & Allen, 2021; Ullsperger & Nikolas, 2017), the 

neurobiological mechanisms underpinning this relationship are not well understood. A 

number of theoretical models have been proposed to explain this association such as the 
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“maturation disparity hypothesis”, which posits that youth that begin puberty ahead of their 

peers experience psychological distress due to a mismatch between their accelerated physical 

development and asynchronous development of frontal and limbic brain regions (Brooks-

Gunn et al., 1985; Ge & Natsuaki, 2009; Ullsperger & Nikolas, 2017). However, neuroimaging 

and pubertal development data from a large sample of adolescents (>500 youths) has only 

recently been made available through ABCD. Although other longitudinal adolescent cohort 

studies like IMAGEN do exist, baseline data collection started in mid-adolescence when the 

youth were aged 14 years old. Thus, ABCD has the crucial advantage of following youth from 

the early (or even pre-pubertal) stages of adolescence right through the young adulthood. In 

time, this will allow us to unravel the complex interplay between pubertal development, 

neuromaturation, and the social environment of youth, and how this relates to the onset of 

psychopathology during adolescence.  

 

Although “Big Data” research is well-positioned (and powered) to detect subtle effects such 

as individual differences in development and the associated contributing factors, the breadth 

of studies like ABCD can come at the cost of phenotypic depth. As such, cohort studies may 

be better conceptualised as tools for generating hypotheses that can then be formally tested 

in smaller studies that target a specific mechanism (Saragosa-Harris et al., 2022), as the 

measures available may not match the specific research question at hand. Therefore, the 

bespoke nature of small-scale studies, and the accompanying creativity, helps keep our 

research questions timely and our methods appropriate.  

 

The opportunity to co-produce research with young people is an ideal example of a strength 

of small-scale studies. Co-production helps us ensure that our research questions take us 

towards the world of adolescence rather than away from it (MacSweeney et al., 2019; 

Whitmore & Mills, 2021). For example, although irritability is regarded as a cardinal symptom 

of adolescent depression, the social and interactive context in which irritability occurs during 

this developmental period has typically been overlooked in study designs to date. Both 

irritability and depression have been associated with disruptions to the integration of large-

scale functional brain networks involved in emotion processing and cognitive control, such as 

the DMN, FPN, and SN. However, existing fMRI paradigms targeting irritability (e.g., 

https://imagen-project.org/
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frustrative non-reward paradigms) do not tend to capture the rich social tapestry of the world 

in which this irritable mood occurs. This highlights the need for novel study designs that better 

reflect the social nature of adolescence.  

 

1.8 Thesis aims 

By leveraging the unique strengths offered by large and small-scale neuroimaging studies, the 

current thesis makes a direct contribution to existing knowledge gaps in the field by 

addressing the following four aims, of which the first two involve data from the ABCD Study 

while the latter two use data from a locally collected pilot study:  

 

1. The first aim of this thesis was to examine the temporal origins of brain structural 

associations with depression in early adolescence using baseline data from the ABCD 

Study when youth are aged 9-11 years (Chapter 3).  

 

2. Building on work described in Chapter 3, the second aim of this thesis was to 

investigate whether brain structure mediated the association between earlier 

pubertal timing and later depression using three waves of follow-up data from the 

ABCD Study when the youth are aged 9-13 years (Chapter 4). 

 

3. The third aim of this thesis was to review current findings on the neural circuitry of 

irritability in adolescent depression, highlight directions for future research, and 

emphasise the importance of co-produced research with young people to improve the 

ecological validity of research within the field (Chapter 5).  

 

4. Directly addressing the avenues for further research identified in Chapter 5, the final 

aim of this thesis was to develop a novel fMRI paradigm targeting irritability in a 

sample of local youth with depressive symptoms, using a co-produced youth-

researcher design. Adopting a dynamic functional connectivity approach, I then tested 

the validity of this task as way of inducing irritable mood, and how features of dynamic 



1| General Introduction 

 26 

functional brain networks relate to depressive symptoms and irritable mood in a 

sample of adolescents aged 16-18 years (Chapter 7).  
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2 ABCD Methods 

2.1 Chapter introduction 

In this chapter, I first provide an overview of the Adolescent Brain Cognitive Development 

Study® data, as used in Chapters 3 & 4 of this thesis. I then describe the neuroimaging 

measures and associated quality control protocols, as well as the depression and puberty 

measures in this cohort study. Finally, I outline the rationale for the statistical methods used 

in this work.  

 

Elements of this chapter were adapted from a paper published in Developmental Cognitive 

Neuroscience in June 2022 where I was joint-first author. This paper arose from discussions 

during the 2021 Modelling Developmental Change in the ABCD Study Workshop 

(https://abcdworkshop.github.io). 

 

2.2 The ABCD Study 

The Adolescent Brain Cognitive Development (ABCD) Study® is the largest longitudinal 

developmental neuroimaging study to date with ~11,800 9-10-year-olds recruited at baseline 

between 2016 and 2018. The baseline cohort are being followed up for ten years with data 

collected annually (non-imaging measures) and biannually (imaging measures and bioassays), 

as well as mid-year phone interviews. The original objective of the ABCD Study was to 

investigate risk and resilience factors related to the development of substance use disorders 

(e.g., cannabis). However, the scope of the project has since evolved and is now focused on 

examining the biopsychosocial correlates of mental and physical health in the second decade 

of life (Barch et al., 2021). Undoubtedly, the ABCD Study is a valuable resource to the field of 

developmental cognitive neuroscience with immense potential to provide evidence-based 

policy recommendations to better the lives of young people and their families (Feldstein 

Ewing et al., 2018). 

 

https://www.sciencedirect.com/science/article/pii/S1878929322000585?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1878929322000585?via%3Dihub
https://abcdworkshop.github.io/
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The ABCD Study provides an annual data release which includes tabulated behavioural, 

questionnaire and imaging data along with detailed release notes. The projects included in 

this thesis used data from release 2.0.1 (Chapter 3; 08/07/2019) and release 4.0 (Chapter 4; 

27/10/2021). Access to the ABCD Study data was granted by the National Institute for Mental 

Health (NIMH) under Data User Certificate ID: 10607.  

 

2.2.1 Recruitment 

Participants (and their parents/guardians) were recruited from 21 nationally distributed sites 

across the United States (see Figure 2.1) with the aim of creating a population-level, socio-

demographically-diverse sample (Garavan et al., 2018a). The primary recruitment strategy for 

ABCD was school-based, whereby recruitment materials were given to all children within the 

target age range to take home to their caregivers. Interested families contacted the study site 

directly, underwent a brief phone screening and if eligible, their baseline assessment was 

scheduled. Participants were also recruited through summer-camps and youth groups to 

avoid a recruitment lag during the summer months. Further, researchers at each site were 

encouraged to use their local knowledge to engage with under-recruited youth (e.g., minority 

or low-income families).  

 

ABCD Study exclusion criteria included non-English proficiency in the young person, general 

MRI contraindications, a history of a major neurological disorder, traumatic brain injury, 

extreme premature birth (<28 weeks gestational age), a diagnosis of schizophrenia, 

intellectual disability, moderate to severe autism spectrum disorder, or substance abuse 

disorder (Karcher et al., 2018).  
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2.2.2 Funding and ethics  

 The ABCD Study is supported by the National Institutes of Health and additional federal 

partners under award numbers U01DA041048, U01DA050989, U01DA051016, 

U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, 

U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, 

U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, 

U01DA041148, U01DA041093, U01DA041089, U24DA041123, U24DA041147.  Most ABCD 

research sites obtained ethical approval via a central Institutional Review Board (IRB) at the 

University of California, San Diego, with some sites obtaining local IRB approval (Auchter et 

al., 2018). 

 

2.3 ABCD measures  

The ABCD Study includes a wide range of data on youth and their families’ mental and physical 

health, environmental context, behaviour, genes, and neurocognitive development. The main 

measures used in the current thesis are briefly outlined below. Full descriptions of these 

measures can be found in Chapters 3 & 4.  

Figure 2.1 — Map of ABCD Study sites. Source: www.abcdstudy.org. 
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2.3.1 Neuroimaging measures 

ABCD adopted an optimised MRI acquisition protocol to measure brain structure and 

function, which builds upon efforts made by other Big Data studies such as the Human 

Connectome Project (HCP; https://www.humanconnectome.org) and the Paediatric, Imaging, 

Neurocognition, and Genetics (PING) Study (Jernigan et al., 2016). This protocol is compatible 

with all three 3 tesla (T) scanner types used across sites: Siemens Prisma, General Electric 750, 

and Phillips. The imaging protocol includes 3D T1 and T2 weighted (T1w and T2w) and 

diffusion weighted (DTI) images for measures of brain structure, and resting state and task-

based functional MRI for measures of brain function (Casey et al., 2018a). This thesis used the 

T1w and DTI data, which are detailed below.  

 

2.3.1.1 Scanning protocol  

A T1w sequence acquired 176 contiguous 1.0mm slices (matrix = 256 x 256, FoV = 256mm, 

flip angle = 8°) using RF-spoiled gradient echo scanning for cortical and subcortical 

segmentation. A high angular resolution diffusion imaging (HARDI) scan (81 1.7mm slices, 

matrix = 140 x 140, FoV = 240mm, flip angle = 77/78/90° (scanner dependent)) using 

multiband echo planar imaging (EPI), with multiple b-values, and fast integrated B0 distortion 

correction (reversed polarity gradient method (RPG) was collected for white matter tract 

segmentation and diffusion measurement (Holland et al., 2010). A standard adult-size head 

coil (32 or 64 channel depending on scanner) was used over a nonstandard customised coil. 

There is empirical evidence to support its use for this age group and it avoided a number of 

analysis and practical challenges, such as the issue of a customed head coil being confounded 

with age (Burgund et al., 2002; Kang et al., 2003). Further, at ages 9-10 years when baseline 

data was collected, the brain is 90-95% of the adult brain size (Casey et al., 2018a).  

 

The ABCD Neuroimaging Protocol is outlined in Figure 2.2. Participants completed the 

scanning session in one or two visits depending on scanner and participant availability. The 

scanning protocol was piloted in a subsample of participants across sites and data showed 

that scanning in a single or double session did not significantly affect task performance or 

tiredness levels (Casey et al., 2018a) (see Figure 2.2). To minimise motion, the young person’s 

head was stabilised with foam padding. Further, real-time motion correction and motion 
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monitoring was used on T1w acquisitions (White et al., 2010), which has been shown to 

significantly reduce motion-related image degradation (Tisdall et al., 2016).  

 

 

Figure 2.2 — ABCD Neuroimaging Protocol. Source: Casey et al. (2018). Copyright: Developmental Cognitive 
Neuroscience. MID = Monetary incentive delay task; SST = Stop signal task; EN-back = N-back task.  

 

2.3.1.2 Imaging pre-processing and quality assessment  

The minimally processed T1w and DTI data provided by ABCD in releases 2.0.1 and 4.0 were 

used for Chapters 3 & 4, respectively. This modality specific pre-processing (outlined below) 

was carried out by the ABCD Data Analytics and Informatics Centre (DAIC) including 

converting raw DICOM files to compressed files, distortion and motion correction, alignment 

to standard space, initial quality control, and post-processing quality control (QC).  

 

Before undergoing pre-processing, all image series were visually inspected by at least two 

trained ABCD technicians to check for indicators of poor image quality (e.g., excessive head 
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motion, severe ghosting, blurring, or ringing). As these artefacts make accurate brain 

segmentation impossible, all images that failed the initial QC were removed from further 

processing and analysis by the ABCD team.  

 

2.3.1.3 T1w pre-processing  

First, T1w images were corrected for gradient non-linearity distortions according to scanner-

specific non-linear transformation protocols. To account for intensity non-uniformity typical 

in MRI, where there are inconsistent intensity variations across brain tissue depending on the 

distance from the head coil (i.e., receive coil bias), an in-house bias field correction method 

was applied. Next, the images were registered and resampled to standard space using an in-

house reference brain. This reference brain has 1.0mm isotropic voxels and was generated by 

averaging T1w images from 500 adults after they had been nonlinearly registered to a 

template brain image using discrete cosine transformations (Friston et al., 1995).  

 

FreeSurfer v5.3 was used for cortical surface reconstruction and subcortical segmentation 

(Dale et al., 1999; Fischl et al., 2002, 2004; Fischl & Dale, 2000; Ségonne et al., 2004). 

Morphometric measures used included cortical volume, thickness, area, and sulcal depth, and 

volumetric measures only for subcortical brain regions. FreeSurfer has been validated for use 

in youth (Ghosh et al., 2010) and has already been used successfully in other large-scale 

paediatric neuroimaging studies (e.g., Paediatric Imaging, Neurocognition, and Genetics 

(PING) Study; Jernigan et al., (2016)). The FreeSurfer pipeline labels subcortical structures 

using an automated volumetric segmentation procedure according to Talairach atlas (Fischl 

et al., 2002). In ABCD, this framework yielded 30 labelled subcortical measures. Cortical grey 

matter and underlying white matter structures are labelled according to surface-based 

nonlinear registration to the Desikan-Killiany (DK) atlas based on gyral structures (Desikan et 

al., 2006). In the DK atlas, a gyrus is defined as running between the bottom of two adjacent 

sulci, which parcellates the brain into 34 regions per hemisphere (see Figure 2.3). The 

Destrieux atlas is also available in FreeSurfer and divides the brain into gyral and sulcal regions 

based on the curvature value of the surface (Destrieux et al., 2010). This method provides 74 

sulco-gyral structures per hemisphere. Although both atlases are well-validated and widely 

used (Hagler et al., 2019), the DK atlas was chosen over the Destrieux for its fewer number of 
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brain regions to limit the number of models tested in the whole brain analyses undertaken in 

Chapters 3 & 4. The DK atlas was also chosen for consistency with other large-scale 

neuroimaging studies such as the UK Biobank and the Lothian Birth Cohort. 

 

 

Figure 2.3 — Illustration of the Desikan-Killiany (DK) Atlas brain parcellation ; (34 regions per hemisphere). 
Source: FreeSurfer.com. 

 

2.3.1.4 T1w quality control  

Given the sheer volume of scans collected in ABCD, an exhaustive manual review of every 

scan was not practical. Instead, ABCD used an AI-guided automated quality assessment 

protocol whereby specific QC metrics (e.g., bad registration and brain cut-off) were used to 

identify scans to be sent for manual review. The manually reviewed subsample also included 

a random sample as well as participants with data that had been flagged as statistical outliers. 

This accounts for ~7% of ABCD participants with imaging data. Reviewers assigned a binary (0 

= reject |1 = accept) QC score as well as rating the severity of the problem for five types of 

artefact: motion, intensity inhomogeneity, white matter underestimation, pial 

overestimation, and magnetic susceptibility artefact. Ratings included absent, mild, 

moderate, or severe, and were labelled 0 to 3, respectively. In the most recent ABCD data 

release 4.0., the DAIC have created a variable that indicates whether the T1w imaging data 

has been recommended for inclusion (0 = exclude, 1 = include). This variable encompasses all 

QC criteria (e.g., initial QC, FreeSurfer QC) which were handled individually in previous 

releases.  
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2.3.1.5 DTI pre-processing  

In DTI, eddy currents are created due to a changing magnetic field in the conductor. This can 

lead to distortion of the images and therefore, eddy current correction (ECC) needs to be 

applied. EEC uses a model-based approach where the pattern of distortion is predicted across 

the entire set of diffusion weighted images, based on diffusion gradient orientations and 

amplitudes (Zhuang et al., 2006). In ABCD, to correct for head motion the post-ECC diffusion 

images were adjusted for head rotation (Leemans & Jones, 2009). Further, average frame-

wise displacement values were also calculated which were used as a covariate in my statistical 

analyses to account for residual effects of head motion (Yendiki et al., 2014). Spatial and 

intensity distortions induced by B0  field inhomogeneity in EPI images were minimised using a 

validated and accurate method that relies on reversing phase-encoding polarities (Holland et 

al., 2010). The diffusion weighted images were then resampled with 1.7mm isotropic 

resolution (equal to the DTI acquisition resolution) with a fixed rotation and translation 

relative to the corresponding T1w image. This resulted in a standard orientation for the 

diffusion weighted images which produces more consistent diffusion orientations across 

participants. This improved the registration accuracy of the DTI images to the T1w images 

(Hagler et al., 2019). 

 

AtlasTrack (AT), a probabilistic atlas-based method, was used for the automated 

segmentation of major white matter tracts. The AT fibre atlas contains probabilities and 

orientation information for specific long-range projection fibres. Additional tracts not 

included in the original AT atlas were added by the ABCD team. T1w images for each 

participant were registered to the AT atlas using discrete cosine transformations, and the 

diffusion weighted orientations for each participant were then compared to the pre-defined 

AT orientations and tract location probabilities. Following this atlas registration, several 

standard microstructural measures relating to the white matter tissue properties using DTI 

were calculated, including fractional anisotropy (FA) and mean diffusivity (MD) which I used 

in later statistical analyses. ABCD provides two types of DTI model fits, inner shell (includes 6 

directions at b = 500 s/mm2 and 15 directions at b = 1000 s/mm2 and full/multi shell (includes 

all gradient directions and strengths (directions = 6, 15, 60; b = 500, 1000/2000, 6000 s/mm2). 

Although novel multi shell diffusion techniques, such as Restriction Spectrum Imaging (RSI) 
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allow the estimation of both restricted and hindered diffusion within individual voxels (White 

et al., 2013), I used the inner shell fit in my analyses to keep my methods consistent with 

existing large-scale studies (e.g., ENIGMA, UKB). 

 

2.3.1.6 DTI quality control  

Like the QC protocol applied to the T1w data, the DTI data underwent automated AI-guided 

QC which identified a subsample of scans for subsequent manual review. However, this 

sampling approach was only applied from Release 3.0 onwards. Therefore, in Chapter 3, 

which used data from release 2.0.1, the scans that underwent manual QC comprised the 

subset of participants available in release 1.1. Trained reviewers assigned a binary (0 = reject 

|1 = accept) QC score and rated the severity of the problem for five artefact types: B0 warping, 

motion, full head coverage, registration with T1w image, and accuracy of fibre tract 

segmentation. Ratings included absent, mild, moderate, or severe, and were labelled 0 to 3, 

respectively. Like the T1w data from release 4.0, the modality specific inclusion QC variable 

was used for the DTI data in Chapter 4. This is a binary variable (0 = exclude | 1 = include) that 

covers the individual DTI QC criteria handled individually in earlier releases.  

 

Therefore, for both T1w and DTI data, the QC approach taken in this thesis varies slightly 

between Chapters 3 & 4 and is detailed within each chapter. The quality assessment protocol 

adopted by ABCD is described in full in their annual release notes 

(https://nda.nih.gov/study.html?id=1299) and in the ABCD imaging protocol paper by Hagler 

and colleagues (Hagler et al., 2019). 

  

https://nda.nih.gov/study.html?id=1299
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2.3.2 Depression measures 

In brief, the primary measures used to quantify youth depression were the Kiddie-Schedule 

for Affective Disorders and Schizophrenia (K-SADS; Kaufman et al., 1997) and the Child 

Behaviour Checklist (CCBL; Achenbach, 2011) for Chapters 3 and 4, respectively. Additional 

details of the depression measures used can be found in the individual thesis chapters.  

 

In Chapter 3, a computerised version of the K-SADS was used in the ABCD Study to assess 

lifetime (past and/or current) MDD and depressive symptoms in youth at baseline (Kaufman 

et al., 1997). The K-SADS was completed by both youth and their caregiver separately and was 

self-administered. The computerised version of the K-SADS has been shown to have good to 

high reliability (AUC = 0.89 – 1.00) compared to the clinician administered version (Townsend 

et al., 2020). To quantify MDD, we used the MDD diagnosis binary measure created by the 

ABCD team. We also created an additional measure of depressive symptom (DS) severity 

based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria, which 

categorised DS as “severe”, “moderate”, “mild” and “none”. This DS measure was validated 

using the CBCL.  

 

In November 2021, the ABCD team reported in the 4.0 release notes that an error had been 

discovered with the algorithm used by the ABCD team to generate an MDD diagnosis from 

the K-SADS. The algorithm used did not include impairment in the diagnostic criteria which 

will likely have led to the overestimation of MDD diagnoses in all ABCD data releases to date. 

The paper that comprises Chapter 3 was published before this error was reported, and thus 

the methods pertaining to this chapter describe the original analysis undertaken for the 

paper. At time of writing, this data error had not been fixed and thus, we were unable to re-

run our analyses to examine the extent to which it may have affected our findings. This  data 

error is discussed further in the conclusion of Chapter 3 following the main body of the paper.  

 

In Chapter 4, the CBCL “withdrawn-depressed” syndrome (raw scores) parent report was used 

to examine current youth depressive symptoms. The CBCL is one of the most validated and 

widely used measures to assess internalising and externalising difficulties in young people 

(Achenbach, 2011; Achenbach & Rescorla, 2004). Further, a lifetime measure of depressive 
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symptoms was not appropriate for the analyses in this chapter given the proposed 

directionality of effects (i.e., earlier pubertal timing was hypothesised to be associated with 

later depressive symptoms).  

 

In both Chapters 3 & 4, the Adult Self Report (ASR) scale in the Achenbach System of 

Empirically Based Assessment (Barch et al., 2018a) was used to account for potential biases 

introduced by the current mood of caregivers on the reporting of their child’s 

psychopathology (Maoz et al., 2014). 

 

2.3.3 Pubertal development measure 

The assessment of pubertal development in this thesis is described in full within Chapter 4. In 

brief, the Pubertal Development Scale (PDS) was used to measure perceived pubertal 

development (Petersen et al., 1988). This is a five-item questionnaire that assesses the 

development of secondary sex characteristics, where each is rated on a 4-point scale (1 = no 

development; 2 = development has barely begun; 3 = development is definitely underway; 

and 4 = development is complete). Higher scores thus reflect more advanced pubertal 

development.  

 

As previous research has shown that youth tend to over report pubertal development at 

younger ages (Schlossberger et al., 1992), the PDS parent report was used over the youth self-

report. Moreover, there was a significant degree of missing data (~50%) in the PDS youth self-

report data, which was another deciding factor in my measure choice. As the research 

questions and hypotheses in Chapter 4 pertained to pubertal timing specifically, the PDS total 

score was regressed on age for males and females separately, and the standardised residual 

obtained was used as a continuous measure of pubertal timing (Dorn et al., 2006; Hamilton 

et al., 2014).  

 

2.4 Overview of key statistical methods 

Detailed statistical methods sections can be found within Chapters 3 & 4. Here, I provide a 

brief rationale for the methods chosen.  
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A combination of generalised linear-mixed models (GLM) and linear mixed effects models 

(LME) were used to examine the association between adolescent depression and the 

biological and psychosocial factors of interest in this thesis. GLMs are an extension of the 

general linear model but provide a more flexible analytic framework that can characterise 

non-normal dependent variables. Given that the current dependent variables of interest were 

often binary (e.g., MDD case/control) or discrete counts (e.g., number of depressive 

symptoms), GLMs were used to avoid violating statistical assumptions (e.g., normally 

distributed residual values) (Gardner et al., 1995).  

 

In Chapter 3, I used GLMs to model unilateral brain regions and LMEs to model bilateral brain 

regions, where hemisphere was treated as a within-participant fixed effect and participant ID 

was modelled as a random effect. As the analyses in this chapter pertained to an unrelated 

sample of participants, it was not necessary to account for family ID as a random factor. 

Further, site ID was modelled as a fixed effect.  

 

However, in Chapter 4, I decided to adapt my analytic approach so that it better reflected the 

related structure of ABCD, maximising the data available for the mediation analyses using 

follow up data. Thus, GLMs were used with family ID and scanner ID (or site ID for non-imaging 

models) as random factors. Given that some ABCD sites have multiple scanners, scanner ID is 

the recommended variable to use to account for inter-site differences and is better modelled 

as a random factor. Using a related sample in Chapter 4 resulted in some adjustments to my 

analysis methods compared to Chapter 3. Namely, the mean of bilateral brain structures was 

used due to the additional complexity of the mixed effects analysis structure and non-

convergence of the models using a complex random factor structure (i.e., inclusion of 

participant ID, family ID and scanner ID resulted in model convergence issues). Further, given 

that temporally separated variables were available in release 4.0, it was possible to conduct 

mediation analyses in Chapter 4 using a structural equation modelling (SEM) framework 

(Maxwell et al 2011). SEM has grown in popularity as a way to examine how a predictor 

variable X relates to some outcome variable Y via one (or many) intervening pathways, and 

how well different models fit the observed data (Hayes, 2009).  
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2.5 Summary  

In this chapter, I outlined the neuroimaging measures and quality control procedures, and the 

depression and puberty measures in the ABCD cohort. I also provided rationale for the 

statistical methods employed in Chapters 3 & 4 of this thesis. In the next chapter, I introduce 

my first study in which I investigated brain structural associations with adolescent depression 

using baseline data from the ABCD Study.  
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3 Brain Structural Associations with Depression in 

Adolescence  

 

3.1 Chapter introduction 

Findings from large-scale neuroimaging studies in adults suggest that depression is associated 

with alterations in cortical measures and white matter microstructure. However, most 

research to date has been conducted in adults. Further, the handful of studies examining 

depression-related imaging features in adolescents have reported highly heterogeneous 

findings and have mostly involved older adolescent samples. Therefore, the temporal origins 

of cortical and white matter microstructural changes associated with the emergence of 

depression in adolescence remains largely unknown. Exploring how depression-related 

imaging features in early adolescence relate to findings in adults could provide important 

insight into the aetiology of depression and inform timings of potential interventions.  

 

In this chapter, we therefore undertook whole brain exploratory analyses to examine 

associations between brain structure (cortical metrics and white matter microstructure) and 

youth depression ratings from both parent- and child-report. Here, we used baseline data 

from the ABCD Study (release 2.0.1) when youth were aged 9-11 years (note: the ABCD 

baseline age range is often reported as being 9-10 years, a discrepancy that may be due to 

whether the age of youth at the extreme of this range (e.g., 10.99 years) is rounded up or 

not). In Chapter 4, the baseline age range is reported as 9-10 years as per the initial ABCD 

protocol papers (Casey et al., 2018a; Hagler et al., 2019). 

 

This study was published in EClinicalMedicine in November 2021. I co-led this study with Dr 

Xueyi Shen and we share first authorship on the associated paper. The manuscript of this 

study is included in this chapter in a Word document format. Author contributions are 

included within the manuscript. Minor edits have been made to the main manuscript (e.g., 

updated numbering for the main tables and figures) to keep the formatting consistent across 

https://www.sciencedirect.com/science/article/pii/S2589537021004855
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this thesis. The Supplementary Information for this paper/chapter, including the 

Supplementary Data, and a PDF of the published paper, are included in Appendix 1.  

  

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=hP8td4
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3.2 Abstract 

Background Depression is the leading cause of disability worldwide with >50% of cases 

emerging before the age of 25 years. Large-scale neuroimaging studies in depression 

implicate robust structural brain differences in the disorder. However, most studies have 

been conducted in adults and therefore, the temporal origins of depression-related imaging 

features remain largely unknown. This has important implications for understanding aetiology 

and informing timings of potential intervention.  

 

Methods Here, we examine associations between brain structure (cortical metrics and white 

matter microstructural integrity) and depression ratings (from caregiver and child), in a large 

sample of early adolescents (9 to 11 years old) from the US-based, Adolescent Brain Cognitive 

Development (ABCD) Study®. Data was collected from 2016 to 2018. 

 

Findings We report significantly decreased global cortical and white matter metrics, and 

regionally in frontal, limbic and temporal areas in adolescent depression (Cohen’s d = -0018 

to -0041, β = -0·019 to -0057). Further, we report consistently stronger imaging associations 

for caregiver-reported compared to child-reported depression ratings. Divergences between 

reports (caregiver vs child) were found to significantly relate to negative socio-environmental 

factors (e.g., family conflict, absolute β = 0048 to 0169). 

 

Interpretation Depression ratings in early adolescence were associated with similar imaging 

findings to those seen in adult depression samples, suggesting neuroanatomical 

abnormalities may be present early in the disease course, arguing for the importance of early 

intervention. Associations between socio-environmental factors and reporter discrepancy 

warrant further consideration, both in the wider context of the assessment of adolescent 

psychopathology, and in relation to their role in aetiology.  

Funding Wellcome Trust (References: 104036/Z/14/Z and 220857/Z/20/Z) and the Medical 

Research Council (MRC, Reference: MC_PC_17209).  
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3.3 Introduction   

Major depressive disorder (MDD) is a chief cause of disability (James et al., 2018) with a 

heritability of approximately 37% (Sullivan et al., 2000). This burden falls heavily on 

adolescents, as over 50% of depression cases emerge before the age of 25 (World Health 

Organisation, 2012). Adolescent depression is notably associated with a more severe illness 

course and can lead to the propagation of difficulties across the lifespan (Thapar et al., 2012). 

MDD is associated with disruptions in brain structure (Schmaal et al., 2017, 2020; Shen et al., 

2017, 2019a). However, due to a lack of large-scale neuroimaging samples for adolescents, 

the origin and development of depression-related imaging features remains largely unknown.  

 

Large population-based neuroimaging studies in adults have allowed unparalleled insight into 

the neurobiological underpinnings of depression (Shen et al., 2017, 2019a). For example, 

recent evidence from the ENIGMA (Enhancing NeuroImaging Genetics through Meta-

Analysis) consortium demonstrated widespread structural abnormalities in MDD from large 

adult samples, including reduced hippocampal volume, decreased frontal cortical thickness 

(Schmaal et al., 2017; N=10,105) and altered fronto-limbic and fronto-thalamic tract 

microstructure (van Velzen et al., 2020; N=2,907). Since these highly powered studies have 

largely been conducted in adults, they preclude investigation of the neurobiology underlying 

the emergence and development of depression earlier in life. Given adolescence is the period 

of greatest risk for the development of depression (Thapar et al., 2012), as well as a time of 

immense neurodevelopmental change (Mills et al., 2016; Tamnes et al., 2017), it is a key 

period in which to investigate evidence for the emergence of these imaging features.  

 

Findings from earlier studies on brain structural alterations in adolescent MDD have been 

highly heterogeneous (Arnone et al., 2012; Kempton et al., 2011; Lai, 2013; Reynolds et al., 

2014; Serafini et al., 2014; Shad et al., 2012). A recent meta-analysis of imaging studies of 

MDD from ENIGMA, which included a relatively large adolescent population (N=507, age 

range 12-21 years), indicated lower global surface area and regional reductions in frontal 

areas in this younger sample of depressed cases (Schmaal et al., 2017). However, this 

subsample comprised primarily of participants from older adolescence to young adulthood, 

where 90% of the sample were aged ≥16 years, meaning earlier origins of depression related 
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brain imaging features remain underexplored. There have also been recent efforts to 

investigate whether white matter integrity disruptions seen in adult cases are present in 

adolescent depression. Although some studies report reduced white matter microstructural 

integrity in adolescents with depression, findings have lacked consistency in terms of regions 

(Bessette et al., 2014; Jones et al., 2019; LeWinn et al., 2014) and effects sizes (Aghajani et al., 

2014; Henderson et al., 2013), likely due to small sample sizes (Bessette et al., 2014; Jones et 

al., 2019; LeWinn et al., 2014). Moreover, symptom heterogeneity may contribute to these 

disparate findings as reduced white matter integrity has been found to relate to depression 

subtypes (Cullen et al., 2019) as well as subthreshold depression (Vulser et al., 2018). It 

therefore remains unclear whether reduced white matter integrity is a hallmark of early 

depression pathophysiology during adolescence.  

 

There is a significant degree of individual difference in symptom presentation and impairment 

in adolescents experiencing depressive symptoms, especially regarding the social context in 

which these difficulties manifest (e.g., home, school). Discordance between child and parent 

reports of psychopathology has been well documented (Achenbach, 2006; De Los Reyes, 

2011) with some research suggesting that parents may under-report youth depressive 

symptoms compared to youth self-report (Eg et al., 2018). However, given inconsistent 

findings in the literature (De Los Reyes et al., 2013), a multiple-informant approach, which 

usually includes the young person and their parents, remains “best-practice” (De Los Reyes 

et al., 2015; Rausch et al., 2017). Notably, the associated implications of reporter discrepancy 

in youth psychopathology (Achenbach, 2006) has been understudied in the context of 

underlying neurobiological associations. We extend this existing work by looking at both 

parent and child reported symptoms and how these differentially associate with imaging 

features. 

 

The current study therefore examines early associations between multi-modal structural 

imaging features and the emergence of MDD and depressive symptoms (DS) from the 

population-based, demographically diverse, Adolescent Brain Cognitive Development (ABCD) 

Study, using both caregiver and child reported symptoms (Casey et al., 2018a). The ABCD 

Study is a population-based longitudinal project that encompasses magnetic resonance 
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imaging (MRI) data and lifetime assessments of psychiatric disorders in 9-11-year-old US 

children (N = 8634, mean age = 991 years). 

 

3.4 Methods 

3.4.1 Participants 

Data from the curated annual release 2.0.1 of the Adolescent Brain Cognitive Development 

(ABCD) Study were used. Participants were recruited from 21 sites across the United States 

(Garavan et al., 2018a). A total of N = 10,198 children (9-11 years) participated in the baseline 

assessment, which took place between September 1st 2016 and August 31st 2018. The 

unrelated participants with quality-controlled brain imaging measures (cortical measures or 

white matter measures) were included in the analysis (N = 8631, mean age = 991, standard 

deviation = 062, 523% were male). The study was approved by the National Institute of 

Mental Health Data Archive, United States (NIMH). Written consent was obtained from all 

participants. Data was accessed through the NDA data base (https://nda.nih.gov/general-

query.html?q=query=featured-

datasets:Adolescent%20Brain%20Cognitive%20Development%20Study%20(ABCD); Federal-

Wide Assurance: FWA00018101). Further details can be found in Table 3.1. Demographic 

information for those with missing data can be found in Table S1. 

 

3.4.2 Derived brain structural measures 

Brain imaging data were acquired and processed by the ABCD team. A 3-T Siemens Prisma, 

General Electric 750 or Phillips scanner was used for data acquisition. A unified protocol for 

the scanning was used to harmonise between sites and scanners. Protocols used for data 

acquisition and processing are described elsewhere (Casey et al., 2018a). Standard pre-

processing and quality check (QC) procedures were conducted according to the ABCD 

protocol. Participants with excessive head motion or poor data quality were excluded from 

the curated data release.  

https://nda.nih.gov/general-query.html?q=query=featured-datasets:Adolescent%20Brain%20Cognitive%20Development%20Study%20(ABCD)
https://nda.nih.gov/general-query.html?q=query=featured-datasets:Adolescent%20Brain%20Cognitive%20Development%20Study%20(ABCD)
https://nda.nih.gov/general-query.html?q=query=featured-datasets:Adolescent%20Brain%20Cognitive%20Development%20Study%20(ABCD)
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Two types of brain structural measures were used in the present study: grey matter cortical 

and white matter microstructural measures.  

Cortical measures were generated using FreeSurfer 5.3 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). Four types of cortical measures 

were used: surface area, thickness, volume and sulcal depth. First, global measures were 

generated for each cortical measure over the whole brain (see Figure S1). The Desikan-Killiany 

atlas was then used for parcellation of 34 bilateral regional cortical structures.  

White matter microstructural measures included fractional anisotropy (FA) and mean 

diffusivity (MD). Global measures of FA and MD were generated over the whole brain. The 

AtlasTract was used to map boundaries of the 14 bilateral and 3 unilateral major tracts (Hagler 

et al., 2009). FA/MD values were then derived for each of the region. 

Data with poor-quality raw T1/DTI scans and low post-processing QC scores were removed. 

As there were outlying values for white matter microstructural measures, we removed those 

with global FA and MD values 5 standard deviations from mean (Shen et al., 2017). Further 

details can be found in Supplementary Information. 

 

3.4.3 Measures for Major Depressive Disorder and depressive symptoms in 

adolescents 

Life-time Major Depressive Disorder (MDD) and depressive symptoms (DS) for children were 

assessed using a computerised version of the Kiddie Schedule for Affective Disorders and 

Schizophrenia (K-SADS; Kaufman et al., 1997) The scale included 28 binary items on current 

and past DS that reached clinical significance (Table S2). Questions were completed by 

parents and children separately and self-administered. A previous study of the computerised 

version for scales showed good to high reliability, with AUC = 0.89-1.00 comparing against 

clinician administered, computerised K-SADS diagnoses version (Townsend et al., 2020). 

Lifetime measures of MDD and DS were generated by combining reports on current and past 

symptoms (a positive answer for either current or past were grouped as positive for lifetime 

depression, and negative answers on both were grouped as negative, see Supplementary 

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
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Methods). Questionnaires were completed by both children and by a caregiver 

independently. A diagnosis of MDD was generated by the ABCD team for both child and 

caregiver reported symptoms separately (Barch et al., 2018a). We additionally created a 

measure of DS based on Diagnostic and Statistical Manual of Mental Disorders (DSM-V) 

criteria for the severity scale of depression (American Psychiatric Association, 2013b). Levels 

of DS included: ‘severe’, ‘moderate’, ‘mild’ and ‘none of the above’ (encoded as 3-0, 

respectively, see Table S2-3, Figure S4 and Supplementary Methods). DS assessed using the 

Child Behaviour Checklist (CBCL, a Likert-scale measure) based on reports by caregivers were 

also used to validate these measures (Brasil & Bordin, 2010) (see Supplementary 

Information). MDD and DS for unrelated children were included in the analysis. Sample sizes 

for these variables can be found in Table 3.1. 

In addition to the DS reported by caregivers and children separately, we looked at the average 

reports and discrepancies of DS. Average DS was obtained by calculating the mean of DS 

reported by each caregiver-child pair. Discrepancy was generated by obtaining the absolute 

values of subtracting caregiver and child reports. 

We also sought to control for potential biases introduced by the current mood of caregivers 

which could confound associations between their rating of depression in the adolescents with 

the brain structural measures. We used a subscale of DSM-V-oriented items for depressive 

problems from the Adult Self-Report (ASR) in the Achenbach System of Empirically Based 

Assessment (Barch et al., 2018a) (Supplementary Methods).  

 

3.4.4 Measures of socio-environmental factors 

As exploratory analyses to further understand potential socio-environmental factors relating 

to differences in caregiver and child report, we also examined absolute discrepancies in these 

reports with variables from the ABCD sample including cultural, social, family and school 

environment of children reported by both caregivers and children themselves, see 

Supplementary Methods and Table S4. 

 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
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3.4.5 Statistical models 

Statistical analyses were performed in Scientific Linux 2.6.32, using R 3.6.1.  

Firstly, associations between MDD diagnosis (binary) and number of depressive items 

reported DS (continuous) in adolescents and brain structural measures were tested using a 

General Linear Model (GLM, ‘glm’ function) or Linear Mixed-effect model (LME, ‘lme’ 

function) (Pinheiro et al., 2007) in R. For unilateral brain measures, a GLM was used. For 

bilateral brain measures, an LME model was used with hemisphere set as a repeated measure 

(Shen et al., 2017). Covariates included age, age2, sex, ethnicity, study site, recent social 

deprivation, and additional imaging covariates: head motion (data field: ‘fsqc_qu_motion’) 

and hemisphere for the LME models (see Table S5). To further test if current caregivers’ mood 

confounded associations between depression in adolescents and brain structural measures, 

we added ASR scores of caregivers as a covariate and compared the results with the main 

model. 

The analyses of associations with brain structural measures followed a hierarchical order from 

global measures at the whole-brain level to individual structures. For cortical measures, this 

included whole brain cortical volume, mean thickness, total surface area, mean sulcal depth, 

followed by individual brain regions. For white matter microstructural measures (FA/MD), the 

global ‘g’ measures were first tested, followed by individual tracts. The p values were 

corrected using family-wise error correction with the FDR (false discovery rate) method 

(Benjamini & Yekutieli, 2001), using the ‘p.adjust’ function in R. This was applied for each brain 

measure category and each reporter separately. 

In addition to the main models, we conducted analyses on the mean and discrepancy of DS 

reported by caregivers and children. Average reports and discrepancies for DS was generated 

for each child-caregiver pair. Results for the associations between the average severity and 

general/regional brain measures are shown in the Supplementary Information. 

We conducted sensitivity analyses to test potential confounding effects of MRI sites, scanner 

manufacturers and anti-depressant use in the adolescents (methods and results reported in 

the Supplementary Information).  

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
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To examine origins of the discrepancy of reports, we tested which socio-environmental 

factors were associated with the discrepancy. R function ‘kappa2’ from package ‘irr’ was used 

to estimate Cohen’s Kappa for testing agreement between caregiver and child reports 

(https://www.rdocumentation.org/packages/irr/versions/0.84.1). GLM models were used 

and covariates kept consistent with models above with the exception of removing imaging 

covariates (methods reported in Supplementary Information). As these measures were more 

likely to be independent tests rather than correlated (e.g. brain structural measures), we 

applied Bonferroni-correction (Abdi, 2007). 

The current study adheres to the STROBE reporting guidelines. 

 

3.4.6 Role of funding sources 

Our funding sources (Wellcome Trust and Mental Health Research UK) were not involved in 

the study preparation/design, analysis/interpretation of data, nor in the writing and 

submission of this report.  

  

https://www.rdocumentation.org/packages/irr/versions/0.84.1
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/Elb7NFf4taJDp7YqctynpDcBwds3CqWmVlvDKh2a4uyePw?e=nGmEFF
https://www.equator-network.org/reporting-guidelines/strobe/
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3.5 Results 

3.5.1 Major Depressive Disorder (MDD), depressive symptoms (DS) and brain 

measures 

Description of individuals meeting criteria for MDD and reporting DS at mild level and above 

by both parent (MDD: N=194 (2.82%), DS: N=654 (7.57%) and child (MDD: N=180 (2.60%), DS: 

N=687 (7.98%)) are reported in Table 3.1. For caregiver report, youth who had DS of mild, 

moderate and severe type were 0.69% (N=60), 4.47% (N=386), and 2.41% (N=208), 

respectively. For child self-report, individuals reporting mild, moderate and severe DS were 

0.69% (N=59), 4.91% (N=423), and 2.38% (N=205), respectively.  

 

      
N 

Age Sex (% of 
Male)       Mean SD 

Total sample 8634 9.91 0.62 52.3% 
       

MDD 

Reported by 
caregivers 

Case 194 10.02 0.6 53.6% 

Control 6683 9.89 0.62 51.6% 

Reported by 
children 

Case 180 9.95 0.63 58.9% 

Control 6744 9.9 0.62 51.4% 
       

DS 

Reported by 
caregivers 

Severe 60 10.1 0.56 51.7% 

Moderate 386 9.91 0.61 54.1% 

Mild 208 9.96 0.62 58.2% 

None of the above 7980 9.91 0.62 52.1% 

Reported by 
children 

Severe 59 10 0.61 61.0% 

Moderate 423 9.91 0.62 53.9% 

Mild 205 9.86 0.6 52.7% 

None of the above 7926 9.91 0.62 52.1% 

Table 3.1 — Sample sizes and demographic features for MDD and depressive symptoms (DS). 

 

3.5.1.1 Global imaging metrics 

Caregiver report: Global results are shown in Figure 3.1 and Supplementary Data 1. MDD 

diagnosis for the child as reported by caregivers was associated with significantly lower total 

cortical volume (Cohen’s d=-0022, p=0013) and global FA (Cohen’s d=-0027, p=796×10-4). 
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Increasing summary measures of DS reported by caregivers were associated with decreased 

total cortical volume (β=-0037, p=518×10-5), total surface area (β=-0034, p=141×10-4) and 

global FA (β=-0023, p=406×10-3).  

Child report: Associations between imaging measures and the child reported measures are 

also shown in Figure 3.1. In general, the associations were weaker than the above reports by 

caregivers, with fewer significant associations (see Figure 3.1 and Supplementary Data 1). 

MDD diagnosis based on child report was significantly associated with increased cortical sulcal 

depth (Cohen’s d=0020, p=0040) and lower global FA (Cohen’s d=-0018, p=0022), and DS 

were associated with lower total cortical volume (β=-0027, p=293×10-3), smaller total 

surface area (β=-0020, p=0022) and greater sulcal depth (β=0023, p=0023). 

 

 

Figure 3.1 — Associations between Major depressive disorder (MDD), depressive symptoms (DS) and general 
measures of cortical and white-matter structures. X-axes represent standardised effect sizes, and y-axes 
represent each general measure of brain structure. Error bars represent the 95% confidence interval. Panel (a) 
shows the results for MDD/depressive symptoms reported by caregivers on children, and panel (b) shows the 
results for MDD/depressive symptoms reported by children themselves. 
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3.5.1.2 Regional brain metrics 

Caregiver report: Regional results are shown in Figure 3.2 & Figure 3.3 and Supplementary 

Data 2-5. For cortical measures, MDD diagnosis-based reports by caregivers was associated 

with reduced volumes of the caudal middle frontal lobe, entorhinal cortex, superior frontal 

lobe, superior temporal lobe, and temporal pole (Cohen’s d range: -0019 to -0029, pFDR 

range: 0043 to 0012). Volumes in caudal middle frontal lobe and superior frontal lobe were 

also associated with DS, along with volumes in other regions that include inferior parietal 

lobe, middle temporal lobe and precentral gyrus (β range: -0019 to -0024, pFDR range: 0041 

to 0012). Smaller surface area of similar regions was associated with higher DS, which include 

caudal middle frontal lobe, inferior parietal lobe, middle temporal lobe and superior frontal 

lobe (β range: -0020 to -0024, pFDR range: 0049 to 0013). Sulcal depth of rostral anterior 

cingulate was also associated with higher DS (β=0029, pFDR=0004).  

For white matter microstructural measures, MDD diagnosis by caregivers was associated with 

lower FA in uncinate fasciculus, inferior longitudinal fasciculus, inferior-fronto-occipital 

fasciculus, superior longitudinal fasciculus, temporal superior longitudinal fasciculus, parietal 

superior longitudinal fasciculus, superior cortico-striate tract and inferior frontal superior 

frontal cortex (Cohen’s d range: -0016 to -0036, pFDR range: 0049 to 374×10-4). Increased 

DS were associated with reductions of white matter microstructural integrity in the inferior 

longitudinal fasciculus, superior longitudinal fasciculus, parietal superior longitudinal 

fasciculus, superior cortico-striate tract (β range: -0021 to -0026, pFDR range: 0045 to 0021). 

Child report: The only significant association between reports by children and individual brain 

regions was for surface area of transverse temporal and MDD diagnosis (Cohen’s d=0027, 

pFDR=0019). No significant association was found for white matter microstructural measures 

(pFDR>011).
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Figure 3.2 — P-value plots for associations between depressive symptoms (DS) and measures for regional brain regions. X axes represent individual brain 
structural measures, and y axes represent -log10 transformed p-values. Panels (a) and (b) present the p-value statistics for DS reported by caregivers on 
children and for symptoms reported by children themselves, respective. Panels (c) and (d) show the standardised regression coefficients and 95% confidence 
intervals for DS reported by caregivers on children and for symptoms reported by children themselves, respectively. Solid dots represent variables significantly 
associated with DS after FDR-correction. For clarity, threshold for nominal significance before FDR-correction is shown as the grey dashed line in panels (a) 
and (b). 
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c. 

d. 

Figure 3.3 — P-value plots for associations between Major depressive disorder (MDD) and measures for single brain regions. X axes represent individual brain 
structural measures, and y axes represent -log10 transformed p-values. Panels (a) and (b) present the p-value statistics for MDD reported by caregivers on 
children and for symptoms reported by children themselves, respective. Panels (c) and (d) show the standardised regression coefficients and 95% confidence 
intervals for MDD reported by caregivers on children and for MDD reported by children themselves, respectively. Solid dots represent variables significantly 
associated with MDD after FDR-correction. For clarity, threshold for nominal significance before FDR-correction is shown as the grey dashed line in panels (a) 
and (b). 
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3.5.1 The association between adolescent MDD, DS and brain measures 

controlling for mood of caregivers 

We conducted an additional sensitivity analysis to test if associations between caregiver 

reports of MDD/DS in the children remained significant after controlling for measures of 

current depression in the caregivers. All associations remained significant for global brain 

measures (Figure S5). Results for single brain regions can be found in Figure S6-7. Overall 

results with and without controlling for ratings on depressive scale in caregivers showed high 

correlation (across all association tests between individual brain measures and 

MDD/depression symptoms reported by children and caregivers, r = 0.996 for standardised 

effect sizes, r = 0.984 for p-values, see Figure S8). For those associations that were significant 

without controlling for mood of caregivers, all remained in the same direction and 90.3% 

remained significant after FDR-correction. 

 

Additional sensitivity analyses indicated results remained significant after controlling for 

medication (in child) and were consistent across sites/scanner (see Supplementary 

Information, Figures S9-16). Findings also remained robust (in terms of comparison to the 

other caregiver report results) after controlling for the magnitude of reporter discrepancy 

(see Figures S17-19). 

 

3.5.2 Discrepancy between caregiver and child report of depressive 

symptoms and associations with socio-environmental factors 

A significant but low agreement of DS was observed between child and caregiver reports of 

depression in the child (unweighted Cohen’s Kappa=0.06, p=529×10-12). See Figure S4. 

Among the caregiver-child pairs, 92 pairs showed large discrepancy (one reported severe DS 

and the other none), 705 showed moderate discrepancy (discrepancy = two levels) and 7802 

pairs showed low or no discrepancy (discrepancy <= one level, contains 7408 pairs that both 

reported DS lower than mild). Additional analyses that examined reporter discrepancy 

across different K-SADS items indicated a heterogenous pattern of reporter discrepancy 

across the entire range of diagnostic items. See Figure S20.  
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Greater discrepancy in caregiver and child report of DS was positively associated with sleep 

disturbance and family conflict reported by caregivers on children, and family conflict and 

school disengagement reported by children (β range: 0060 to 0169, pBonferroni range: 231×10-

5 to 526×10-18). Greater agreement, reflected by negative associations, was found with 

increased neighbourhood safety and prosocial behaviour of children reported by caregivers, 

as well as acceptance by caregiver/parent and secondary caregiver, school environment, 

school involvement and caregiver/parent monitoring reported by children (β range: -0048 to 

-0096, pBonferroni range: 386×10-7 to 915×10-56). See Figure 3.4. 

 

 

Figure 3.4 — Associations between socio-environmental factors and absolute discrepancies of caregiver and child 
reports on depressive symptoms (DS). Variables marked with an asterisk are caregiver reports and the rest are 
child reports. The x-axis shows the standardised regression coefficients. The y-axis shows the variables 
significantly associated with absolute discrepancies of caregiver and child reports (pbonferroni<0.05). Error bars 
represent 95% confidence intervals. A positive regression coefficient represents a positive relationship between 
the given trait and the absolute discrepancy reported by caregivers and children, and a negative regression 
coefficient represent a relationship between the trait and less discordance between caregiver and child reports. 
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3.6 Discussion  

The current study leverages the largest available sample to report brain structural differences 

and their association with caregiver and child reports of depression in early adolescence. We 

demonstrated that MDD and DS (as reported by caregivers) were associated with similar 

imaging findings as seen in adult samples, including reduced global cortical volume and global 

fractional anisotropy (FA) (MDD: Cohen’s d range: -0022 to -0027, DS: β range: -0029 to -

0057). Our findings also suggest that surface area differences, which have been less 

consistently reported in adult studies, may be a feature of depressive symptoms in 

adolescents. Reports of depression in children given by caregivers consistently demonstrated 

stronger associations with cortical structure and white matter microstructure compared to 

child report. Finally, reporter discrepancy was positively associated with family conflict and 

school disengagement (β range: 0060 to 0169). Higher levels of prosocial behaviour in both 

school and family environments were linked to lower reporter discordance (β range: -0048 

to -0096). Sensitivity analyses demonstrated that our results were not related to potential 

confounders such as anti-depressant medication use (child and caregiver) and scanner and 

site differences.  

 

Along with the global cortical and white matter differences described above, we also report 

regionally reduced white matter microstructural integrity in fronto-limbic circuits such as 

the superior longitudinal fasciculus and cortico-striate tract. This is consistent with 

previous large scale, population-based studies in adult MDD suggesting that aberrant 

patterns of white-matter microstructure are present at the early stages of the disease (Shen 

et al., 2017). Reduced microstructural integrity in these association fibres has been previously 

found to be related to compromised cognitive control, which may underpin clinical features 

of depression (Cox et al., 2016; Holleran et al., 2020; Shen et al., 2017).  

The present investigation also found reduced cortical surface area in adolescents with 

depression, globally and regionally, including a diffuse pattern of localised surface area 

deficits (MDD: Cohen’s d=-0021, DS: β=-0066), but not in cortical thickness. Notably, unlike 

the overall pattern of results, surface area reductions are less commonly reported in adult 

depression compared to cortical thickness reductions (Schmaal et al., 2017). This therefore 
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implies that surface area reductions may be specifically related to the onset and risk factors 

of depression in early life stages. Similar findings were also shown in another cohort study 

looking at older adolescents by Schmaal et al. (2017). While not as commonly reported in 

adult populations as cortical thickness,  surface area reductions have shown to be genetically 

correlated with MDD (Grasby et al., 2020) and are associated with early risk factors of MDD, 

such as early life trauma and low birth weight (Opel et al., 2019; Skranes et al., 2013). Regions 

that demonstrate cortical surface area abnormalities, such as the precentral gyrus, inferior 

parietal gyrus, and the superior frontal gyrus may be more vulnerable to the effects of delayed 

maturation in adolescent depression due to reduced synaptic pruning and dendritic growth 

over this period (Amlien et al., 2016; Wierenga et al., 2014). Longitudinal studies are needed 

to understand the origin and development of depression-related, surface area brain features 

during adolescence and across the life course. 

 

Similarities were observed in the association between depression and brain measures across 

caregiver and child reports. For example, DS from both reports was significantly associated 

with global cortical volume (caregiver: β= -0037; child: β= -0027) and surface area (caregiver: 

β= -0034; child: β= -0020), while MDD status was associated with decreased whole brain FA 

(caregiver: β= -0030; child: Cohen’s d= -0021). The effect sizes were similar to those found 

in adults (Shen et al., 2019a). However, the current study also revealed that reports of 

depression by caregivers on adolescents demonstrated stronger and more numerous 

associations with brain structural measures than by adolescent self-report. These were not 

biased by medication or by current mood of the caregivers themselves. A difficulty in the 

diagnosis of depression in adolescents is the integration of reports from both caregivers and 

adolescents (Achenbach, 2006; De Los Reyes, 2011). Although we found agreement between 

caregiver and child reports across individual depressive items, there were indications of 

important differences. In line with previous work (Blakemore, 2008; De Los Reyes, 2011; Lewis 

et al., 2012), internalising and somatic type symptoms (e.g., self-esteem, guilt) were more 

commonly reported by child than caregiver, while decreased concentration and functional 

impairments were reported more by caregiver than child. Given the stronger neuroimaging 

associations found for caregiver report of depression, we consider that cognitive and 
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functional impairments may be more strongly connected with these early neurobiological 

changes — these hypotheses should be tested in future work.  

 

Depressive symptoms reported by caregivers and children showed significant but low 

correlation, and caregiver’s report showed greater associations with brain structural 

measures. Our findings demonstrate that divergences in origins of reporting relate to 

environmental and societal factors such as family conflict and social cohesion (Kelly et al., 

2016). These findings reveal the importance of a supportive environment in defining 

caregiver-child reporter differences; factors such as child-perceived parental support and 

acceptance also imply secure attachment styles (Chorot et al., 2017). It is possible that 

contextual associations between environmental factors and reporter discrepancy may be 

associated with developmental processes specific to adolescents. Therefore, whilst we cannot 

completely exclude possible contributions of broader socio-environmental factors, we 

consider it unlikely that current socio-economic status was driving our main neuroimaging 

findings, as we have controlled for these in our main analysis. Future longitudinal work should 

examine the neurobiological consequences of these external societal factors to better 

understand their role in the origins of the disorder, as well as the potential for environmental 

intervention. 

Although this study benefits from the large imaging sample size, there are limitations. The 

ABCD cohort is currently a cross-sectional sample. Longitudinal research is needed to facilitate 

investigating causal effects in these relationships and to inform case-control differences in 

developmental courses. Further, MDD diagnosis was unavailable in the current data release 

(2.0.1) for ~20% of participants due to the inclusion of subclinical participants that did not 

reach criteria for case or control categorisation (as conducted by ABCD study team). 

Additional analysis however suggests minimal bias between individuals with and without this 

missing data (see Table S1 in the Supplementary Information for further detail). Missing data 

will remain a challenge for community-based population cohorts like ABCD and its treatment 

will warrant important consideration going forward. While the current study uses both a 

binary and continuous measure of depression, depressive symptoms are notably highly 

heterogeneous (Fried & Nesse, 2015). This heterogeneity can have pronounced research and 
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clinical implications; for example, individual symptoms may differentially impact impairment 

of psychosocial functioning (Fried & Nesse, 2015) and distinctive patterns for longitudinal 

trajectories of individual symptoms may have heterogeneous underlying neurobiological 

mechanisms. Future work should examine depressive symptom heterogeneity in the context 

of brain structure especially during adolescence when subclinical symptoms may manifest, 

and uncertainties exist around subsequent formal diagnoses.  

Although we appreciate the above determinants of heterogeneity for depression, it is 

important to focus on the neurobiological associations directly linked with the overall 

diagnosis and severity as a first step, given that disease prediction using neuroimaging 

phenotypes are predominantly trained and investigated in adult samples (Jahanshad et al., 

2013; Thompson, 2019; Thompson et al., 2014). The present findings on the early origins of 

depression showed distinctive patterns compared to results from adults, which provides 

strong rationale for separating investigations on diagnosis for adolescent depression, as well 

as its prediction and treatment. Further, the current findings were generally robust against 

influence from comorbidity. However, some associations, for example, those found in general 

cortical grey matter measures, attenuated after controlling for comorbidity. Reasons for this 

may include shared genetic and environmental risk factors between major psychiatric 

disorders (Sullivan & Geschwind, 2019). Future studies using genetic and epigenetic data may 

be able to interrogate cross-disorder associations more directly. 

 

Small effect sizes found for the associations in the present study are likely to be contributed 

by the heterogeneity of disease manifestations and presentation of subtypes. Small effect 

sizes are a challenge in large neuroimaging research due to the small amount of variance 

explained by each individual variable (Dick et al., 2021; Milham et al., 2017). However, big 

data research also allows for the identification of subtle effects, and neurobiological 

associations with depression are indeed consistently small in large-sample studies (Schmaal 

et al., 2017, 2020; Shen et al., 2017, 2019a; van Velzen et al., 2020). These subtle effects may 

not be statistically detectable in small-scale studies, which also have the caveat of potentially 

inflated effect sizes due to sample selection bias (Milham et al., 2017). However, the advent 

of machine learning techniques that examine multiple neuroimaging variables simultaneously 
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in large multi-site studies holds promise of a move towards the identification of clinically 

relevant neuroimaging disease markers (Nunes et al., 2020). A further limitation is the young 

age of the adolescents in the current sample (aged 9-11). It is likely that the cascade of 

neurobiological changes associated with the onset of puberty may have a further significant 

impact on the neural circuits implicated in depression (Dahl et al., 2018; Pfeifer & Allen, 2021). 

Future research is needed to explore any interaction effects between pubertal development, 

brain measures, and depression in adolescents.  

 

Our findings demonstrate similarities between adult and adolescent imaging features of 

depression which collectively suggest that cortical and white matter microstructural 

abnormalities are present early in the disease course of depression and that some of these 

may extend throughout the lifespan (Schmaal et al., 2017). We demonstrate that these 

depression-related imaging features are not related to medication in this early adolescent 

sample. Our results also show evidence of decreased surface area, which may imply an 

adolescent-specific vulnerability. Investigating the origins of these differences may further 

the understanding of the aetiology of depression over this highly sensitive 

neurodevelopmental period and thus, help identify at-risk youth. Future longitudinal studies 

may further inform causal relationships between depression during adolescence and brain 

structural development.  
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3.7 Chapter conclusion 

Before exploring how other biological and social factors relate to the adolescent brain and 

depression, we needed to trace the roots of depression in the early adolescent brain. The 

work outlined in this chapter directly addressed this aim and laid a strong foundation upon 

which to base the work undertaken in Chapter 4. Following the publication of our paper, there 

are a few important considerations to highlight: 

 

Firstly, we interpret lower FA values as representing reduced white matter microstructural 

integrity. As discussed in Chapter 1, this interpretation is increasingly being regarded as overly 

simplistic due to the complex biophysical mechanisms that give rise to DTI measures. Thus, 

we have avoided using the term “integrity” when discussing white matter microstructural 

measures in the remainder of this thesis.  

 

Secondly, in November 2021, the ABCD team reported in the 4.0 release notes that an error 

had been discovered with the algorithm used to calculate the K-SADS MDD diagnosis. 

Specifically, the algorithm used did not include impairment in the diagnostic criteria which 

will likely have led to the overestimation of MDD diagnoses in all ABCD data releases to 

date. The paper that comprises Chapter 3 had already been published when this error was 

reported. Given that the noted MDD issue has yet to be fixed at the time of writing (and is 

not expected to be until release 5.0, due in early to mid 2023), we were not able to re-run 

our analyses to specifically test the extent to which this data error may have influenced our 

findings. We have made the code for all analyses in this chapter publicly available and 

encourage other research teams to test the replicability of our findings once this data error 

has been fixed. However, our study used both a binary (MDD) and continuous (depressive 

symptom severity) measure of depression, the latter of which was not affected by the 

algorithm error. Importantly, we found similar brain structural associations across both 

depression indices and therefore, we feel that this data error is unlikely to have impacted 

the main findings of the study.  
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4 The Role of Brain Structure in the Association 

Between Pubertal Timing and Depression Risk 

 

4.1 Chapter introduction 

Our findings from Chapter 3 suggest that brain structural alterations exist early in the disease 

course of depression. Although adolescence is characterised by significant brain 

morphological changes, beyond age related changes, pubertal maturation is also associated 

with brain structural changes. Importantly, youth that begin puberty ahead of their peers (i.e., 

have earlier pubertal timing) are at an increased risk for depression during adolescence. 

However, the role that brain structure may play in the relationship between pubertal timing 

and depression risk is not well understood.  

 

In this chapter, I used data from the ABCD Study to undertake pre-registered analyses to first 

test whether earlier pubertal timing measured when youth were aged 10-11 years is 

associated with increased depressive symptoms two years later, when youth were aged 12-

13 years. I then tested whether certain cortical, subcortical and white-matter microstructural 

measures, that were identified via pilot analyses, mediated this association. This study was 

conducted as a registered report, whereby the Stage 1 manuscript, comprising the 

Introduction, Methods, Data Analysis Plan, and Pilot Analyses, was submitted for review to 

Developmental Cognitive Neuroscience in December 2021. Following peer review and 

revision, our study was awarded an “in-principle acceptance” in August 2022, after which I 

was able to begin the main analysis and interpret our findings (Stage 2). I hope that the 

registered report format of this work, and the extensive detail given on the study design, 

materials and analyses will increase the replicability and reproducibility of this research.  

 

Our registered report is included in full in this thesis chapter and was submitted for Stage 2 

review at Developmental Cognitive Neuroscience in December 2022. Supplementary 
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Information and Supplementary Data for this registered report/chapter is included in 

Appendix 2.   

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EpFT_8Z4blFLp4nRel-a-2sBqpzhvjxyNoTrbieE8yLBpQ?e=n6Yhii
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4.2 Abstract  

Background 

Earlier pubertal timing (PT) is associated with higher rates of depressive disorders in 

adolescence. Neuroimaging studies report brain structural associations with both pubertal 

timing and depression. However, whether brain structure mediates the relationship between 

PT and depression remains unclear.  

 

Methods 

The current registered report examined associations between PT (indexed via perceived 

pubertal development), brain structure (cortical and subcortical metrics, and white matter 

microstructure) and depressive symptoms (DS) in a large sample (N = ~5,000) of young 

adolescents (aged 9-13 years) from the Adolescent Brain Cognitive Development (ABCD) 

Study. We used three waves of follow-up data when the youth were aged 10-11 years, 11-12 

years, and 12-13 years, respectively. We used generalised linear-mixed models (H1) and 

structural equation modelling (H2 & H3) to test our hypotheses.  

 

Hypotheses 

We hypothesised that earlier PT at Year 1 would be associated with increased DS at Year 3 

(H1), and that this relationship would be mediated by global (H2a-b) and regional (H3a-g) 

brain structural measures at Year 2. Global measures included reduced cortical volume, 

thickness, surface area and sulcal depth. Regional measures included reduced cortical 

thickness and volume in temporal and fronto-parietal areas, increased cortical volume in the 

ventral diencephalon, increased sulcal depth in the pars orbitalis, and reduced fractional 

anisotropy in the cortico-striatal tract and corpus callosum. These regions of interest were 

informed by our pilot analyses using baseline ABCD data when the youth were aged 9-10 

years.  

 

Results 

Earlier pubertal timing was associated with increased depressive symptoms two years later. 

The magnitude of effect was stronger in female youth and the association remained 
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significant when controlling for parental depression, family income, and BMI in females but 

not in male youth. On the other hand, our hypothesised brain structural measures did not 

mediate the association between earlier pubertal timing and later depressive symptoms.  

 

Conclusion 

The present results demonstrate that youth, particularly females, who begin puberty ahead 

of their peers are at an increased risk for adolescent-onset depression. Future work should 

explore additional biological and socio-environmental factors that may affect this association 

so that we can identify targets for intervention to help these at-risk youth.  
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4.3 Introduction 

Adolescence is a period of increased vulnerability to mental health conditions, particularly 

internalising difficulties such as depression (Malhi & Mann, 2018; Thapar et al., 2012). Earlier-

onset of depression is associated with a more severe illness course (Thapar et al., 2012) and 

with a range of psychosocial and physical difficulties which perpetuate across the lifespan 

(Clayborne et al., 2019; Fergusson & Woodward, 2002; Naicker et al., 2013). Given the 

emergence of depression during the adolescent period, the role that pubertal development 

may play in this heightened vulnerability has garnered increasing attention (Graber, 2013; 

Hamlat et al., 2019; Pfeifer & Allen, 2021; Ullsperger & Nikolas, 2017). Earlier pubertal timing 

has been associated with increased risk for depression in both males and females (Graber, 

2013; Hamlat et al., 2020; Mendle et al., 2010; Ullsperger & Nikolas, 2017). Further, genetic 

studies have found that earlier age of menarche is implicated in depression (Howard et al., 

2019). Adolescence is also a time of immense neurobiological change (Mills et al., 2016; 

Tamnes et al., 2017; Vijayakumar et al., 2016) and brain structural differences have been 

found in both adults (Schmaal et al., 2017, 2020; Shen et al., 2017, 2019a) and adolescents 

(Schmaal et al., 2017; Shen et al., 2021) with depression. However, the role that neural 

mechanisms may play in the relationship between pubertal timing and depression risk is not 

well understood. Here, we therefore examine whether brain structure mediates the 

association between pubertal timing and depressive symptoms in a large sample of 

adolescents (aged 9-13 years) from the Adolescent Brain Cognitive Development (ABCD) 

Study®. 

 

4.3.1 Defining and measuring pubertal timing 

Pubertal timing measures pubertal development relative to same-age, same-sex peers, such 

that an individual can be categorised as developing ahead (early), in-line (on-time) or after 

(late) their peers. Measures of pubertal timing are most often derived from methods used to 

assess pubertal status, such as the Pubertal Development Scale (PDS; Petersen et al., 1988) 

and Tanner Stage Line Drawings (TS; Marshall & Tanner, 1969, 1970). However, other 

measures used include age of menarche and sex hormone measures (Goddings et al., 2019; 

Ullsperger & Nikolas, 2017). Pubertal maturation as assessed by the PDS and TS focuses on 



4| The Role of Brain Structure in the Association Between Pubertal Timing and Depression 
Risk 

 72 

the development of secondary sex characteristics (e.g., testicular, breast, and pubic hair 

development), which stem directly from changes in sex hormones. These measures are 

completed by a clinician (TS), or via self- (or parent-) report (PDS/TS). Most often, a pubertal 

timing score is derived by regressing a pubertal status score on chronological age to calculate 

a sex-specific residual for each person (Barendse et al., 2021; Dorn & Biro, 2011; Mendle et 

al., 2010; Ullsperger & Nikolas, 2017). The residual score represents how much an individual’s 

pubertal development deviates from what is expected for their age with positive and negative 

scores indicating earlier and later timing, respectively. It is worth noting that pubertal 

development consists of two phases: adrenarche, usually occurring between the ages 6-9 

years (Biro et al., 2014), and gonadarche, which typically takes place between the ages 9-14 

years for females and 10-15 years for males. 

 

4.3.2 Pubertal timing and psychopathology 

Historically, research on pubertal timing effects on psychopathology has highlighted that 

youth, particularly females (Graber, 2013; Hamlat et al., 2019; Hamilton et al., 2014), who 

undergo puberty earlier than their peers are at an increased risk for psychopathology (Conley 

et al., 2012; Ge & Natsuaki, 2009; Hamilton et al., 2014). However, a recent meta-analysis 

suggests that earlier pubertal timing is detrimental to both sexes and that later pubertal 

timing is not significantly associated with psychopathology (Ullsperger & Nikolas, 2017). 

Although a number of conceptual models (Brooks-Gunn et al., 1985, 1994; Petersen et al., 

1988) have been proposed to explain the association between earlier pubertal timing and 

increased risk for psychopathology, the “maturation disparity hypothesis” (Brooks-Gunn et 

al., 1985; Ge et al., 2001; Ge & Natsuaki, 2009), has received the most empirical support 

(Graber, 2013; Ullsperger & Nikolas, 2017). The maturation disparity hypothesis posits that 

early developing youth experience psychological distress due to an incongruity between their 

accelerated physical development and asynchronous maturation of cognitive and emotional 

brain regions.  

 

Importantly, the psychological and social changes that occur during adolescence such as 

heightened self-awareness and social sensitivity (Blakemore & Mills, 2014; Pfeifer & Peake, 

2012), increased risk-taking behaviour and impulsivity (Bjork & Pardini, 2015; Defoe et al., 
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2015; Romer, 2010) as well as greater peer influence on behaviour (Albert et al., 2013; 

Blakemore, 2018; Knoll et al., 2015) are likely underpinned by the distinct developmental 

trajectories of temporal and limbic areas (involved in emotion and reward processing) and 

prefrontal regions (involved in cognitive control) (Albert et al., 2013; Casey et al., 2008; Mills 

et al., 2014; Steinberg, 2008). It has been postulated that earlier developing youth therefore 

experience a greater discordance in the mismatch between the earlier developing affective 

regions and the more protracted development of cognitive regions (Ge & Natsuaki, 2009; 

Ullsperger & Nikolas, 2017), which may place them at an increased risk for mental health 

difficulties. Given that the onset of puberty is about 18 months earlier for females than males, 

this maturation disparity hypothesis may also explain the preponderance of depression (2:1) 

in females compared to males from adolescence onwards (Conley et al., 2012; Hankin, 2006, 

2015; Hankin & Abramson, 1999). Although the maturation disparity hypothesis best 

accounts for the extant findings, a more nuanced model that considers the role of biological 

and psychosocial factors as potential mediators or moderators in the association between 

earlier pubertal timing and increased risk for psychopathology is needed.  

 

4.3.3 Pubertal timing and brain structure 

Research on typical neurodevelopment demonstrates a reduction in grey matter volume and 

cortical thickness during adolescence, while cortical surface area increases throughout 

childhood before plateauing by mid-adolescence, and slightly decreasing thereafter 

(Bethlehem et al., 2022; Ducharme et al., 2016; Mills et al., 2016; Vijayakumar et al., 2016; 

Wierenga et al., 2014). These patterns of human brain development, were recently evidenced 

in a collaborative paper involving >100 studies and >123,000 MRI scans (Bethlehem et al., 

2022), which is the largest aggregated sample to date. However, research has also shown that 

pubertal development impacts neurodevelopment beyond age-related changes (Vijayakumar 

et al., 2018). For example, a number of studies demonstrate extensive negative associations 

between pubertal timing (indexed via physical and hormonal measures) and cortical volume 

and thickness, mainly in regions implicated in cognitive control, decision making, and emotion 

regulation, such as the prefrontal cortex, anterior cingulate cortex, and the temporal lobe 

(Koolschijn et al., 2014; Pfefferbaum et al., 2016). Notably, few studies have examined surface 

area changes during puberty as surface area is often obscured when investigating volumetric 
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estimates — a product of cortical surface area and thickness (Vijayakumar et al., 2016). Given 

that surface area and cortical thickness reflect distinct neurobiological processes (Wierenga 

et al., 2014) and are genetically independent of each other (Winkler et al., 2010), examining 

pubertal timing in relation to surface area maturation may reveal novel associations. 

 

Regarding associations between subcortical measures and pubertal development, research 

has focused on the amygdala, hippocampus, and striatal regions given their role in emotion 

regulation, reward processing, and decision making (Bhanji & Delgado, 2014; Dalgleish, 2004). 

A number of cross-sectional and some longitudinal studies have reported that more advanced 

pubertal maturation is associated with an increase in volume of the amygdala and 

hippocampus and a decrease in volume in striatal areas (Blanton et al., 2012; Hu et al., 2013; 

Goddings et al., 2014, 2019). Although these findings provide insight into the role of puberty 

in subcortical brain development, there is a dearth of research that specifically examines 

pubertal timing (i.e., pubertal development relative to same-age, same-sex peers) (Goddings 

et al., 2019) and its association with brain morphological changes (Koolschijn et al., 2014; 

Neufang et al., 2009; Peper et al., 2009). Further, longitudinal data has shown that there are 

unique but co-existing age effects that complicate examining the relationship between 

puberty and structural brain development (Goddings et al., 2019). For example, a recent 

longitudinal study demonstrated a positive linear association between perceived pubertal 

maturation (indexed via TS) and the hippocampus, amygdala, caudate and pallidum. 

However, these associations did not remain significant when age was controlled for 

(Vijayakumar et al., 2021). Further inconsistencies have emerged in the literature when 

utilising different measures of pubertal development (Koolschijn et al., 2014; Vijayakumar et 

al., 2018), and also in studies using large age ranges (Satterthwaite et al., 2014; Urošević et 

al., 2014). There is also some research suggesting that pituitary gland volume mediates the 

association between earlier pubertal timing and increased risk for depression in adolescence 

but more research is needed on this topic (Whittle et al., 2012). Additionally, the current 

literature does not allow for the identification of clear sex differences in the association 

between cortical and subcortical structure and pubertal timing, likely owing to the paucity of 

longitudinal, large-scale research in this area (Herting & Sowell, 2017; Vijayakumar et al., 

2018).  
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There is less research examining the association between pubertal development and white 

matter microstructure (Goddings et al., 2019) and findings are mixed (Vijayakumar et al., 

2018). There is some degree of support for a positive association between pubertal timing 

and fractional anisotropy (FA; Herting et al., 2012; Peper et al., 2015). However, findings have 

been inconsistent when considering the relation between pubertal hormones and FA, and 

between all indices of pubertal development (physical maturation and hormonal measures) 

and mean diffusivity (MD; Herting et al., 2012; Peper et al., 2009). These discrepancies may 

be attributed to the various diffusion tensor imaging (DTI) techniques employed and the 

relatively small sample sizes. Future large-scale neuroimaging research that leverages 

harmonised protocols and considers the unique and contemporaneous effect of age is 

needed to disentangle the associations between pubertal timing and white matter 

microstructure.  

 

Large, population-based research projects, such as the ABCD Study®, directly address 

limitations of earlier research (e.g., small sample sizes, inconsistent protocols) and will allow 

us to investigate how brain changes across adolescence are related to developmental 

outcomes, especially the emergence of mental health difficulties (Casey et al., 2018a). The 

ABCD Study includes magnetic resonance imaging (MRI) data, assessments of psychiatric 

disorders, and hormonal and physical puberty measures in 9-10-year-old US children at 

baseline (N= ~11,800). Our previous work with the ABCD Study® explored the temporal origins 

of depression-related imaging features and demonstrated that depression ratings in early 

adolescence were associated with similar cortical and white matter microstructural 

differences to those seen in adult samples (Shen et al., 2021). These findings suggest that 

neuroanatomical abnormalities may be present early in the disease course. However, the 

cascade of neurobiological changes associated with the onset of puberty may have an 

important role in risk for depression and may allow further mechanistic insight into the origins 

of these depression-related imaging features (Dahl et al., 2018; Pfeifer & Allen, 2021).  
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4.3.4 Proposed study  

While research has shown that earlier pubertal timing is associated with an increased risk for 

depression, the underlying neurobiological mechanisms remain unclear. The goal of the 

present study was to investigate whether brain structure (cortical and subcortical metrics, 

and white matter microstructural measures) mediates the association between earlier 

pubertal timing (indexed via perceived physical development) and increased depressive 

symptoms in a young adolescent sample. We first tested if earlier pubertal timing when youth 

were aged 10-11 years (Year 1) was associated with higher depressive symptoms two years 

later when they were aged 12-13 years (Year 3). We then examined whether specific brain 

structural metrics at Year 2 (identified via our pilot analyses, described in detail in Pilot 

Analyses), mediated the association between earlier pubertal timing and later depressive 

symptom severity. Given the differences in the average age of puberty-onset for males and 

females, we ran our models separately for males and females.  

 

Specifically, our key hypotheses were that earlier pubertal timing at Year 1 would be 

associated with increased depressive symptoms at Year 3 (H1), and that this relationship 

would be mediated by global (H2a-b) and regional measures (H3a-g) outlined in Table 4.1. 

These regions of interest were consistent with existing literature on puberty- and depression-

related imaging features in adolescence (Schmaal et al., 2017; Shen et al., 2021; Vijayakumar 

et al., 2018). We did not make formal hypotheses about sex differences in the current study 

due to inconsistent findings in the literature. 
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Research Q Hypothesis 
Analysis 

Test 

Effect of 

Interest 

Threshold 

for evidence 

Is earlier pubertal 

timing associated 

with later 

depression? 

H1: Earlier pubertal timing will be 

associated with later higher 

depressive symptoms 

Generalised 

linear 

mixed 

effect 

model 

Beta value and 

p value 

ß ≥0.01 and 

p ≤0.05 

Does brain 

structure mediate 

the association 

between earlier 

pubertal timing 

and later 

depression? 

Informed by our pilot analyses, the 

association between earlier pubertal 

timing and increased depressive 

symptoms will be mediated by: 

 

Global measures 

H2a: Reduced global cortical volume, 

surface area, thickness and sulcal 

depth 

 

H2b: Reduced global FA 

 

Regional measures 

H3a: Reduced cortical thickness in 

temporal regions, namely, the 

middle temporal gyrus and insula 

 

H3b: Reduced cortical thickness in 

frontal regions namely, the lateral 

orbito-frontal cortex and middle 

frontal gyri 

 

H3c: Reduced cortical volume in 

temporal regions, namely, middle 

temporal gyrus and bank of the 

superior temporal sulcus 

 

H3d: Reduced cortical volume in 

fronto-parietal regions, namely, the 

middle frontal and postcentral gyri 

 

H3e Reduced FA in the cortico-

striatal tract and corpus collosum 

 

H3f: Increased sulcal depth in the 

pars orbitalis 

 

H3g: Increased volume in the ventral 

diencephalon 

Multi-level 

structural 

equation 

model 

Indirect effect 

in mediation 

model 

ß ≥0.01 and 

p ≤0.05 

Table 4.1 — Hypotheses tested in this registered report. 
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The results of this multi-modal study will inform our understanding of how pubertal timing 

and brain structure may be associated with depression during adolescence. Undertaking this 

project as a registered report with shared analytic code applied to an openly available dataset 

will further increase the replicability and reproducibility of this work.  
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4.4 Materials and methods 

4.4.1 Participants  

The data used in the current study were drawn from the ABCD curated annual data release 

4.0. and used Year 1, Year 2, and Year 3 follow up data. ABCD participants were recruited from 

21 sites across the United States (Garavan et al., 2018a). Approximately N = ~11,800 9–10-

year-olds participated in the baseline assessment. We included individuals with quality-

controlled pubertal development measures (physical) at Year 1 and quality-controlled brain 

imaging measures (cortical and subcortical size/metrics, and white matter measures) at Year 

2. Missing depression outcome and covariate data were handled using appropriate methods 

(see Missing Data section). This resulted in a final sample of approximately N = ~5,000 

individuals, which represents about 50% of the full sample. This smaller sample size can be 

attributed to the partial follow-up data available at the time of the 4.0 data release (Fall 2021).  

To inform hypotheses for the current registered report, specifically the brain regions of 

interest (ROIs), we conducted pilot analyses using data from the baseline timepoint, when 

youth were aged 9-10 years (N = 9,339, males = 4802, females = 4537) from data release 4.0. 

Participants were included in the pilot analyses if they had quality controlled pubertal 

development, depression, and brain imaging measures. Given that the main analyses did not 

use any baseline data, we did not anticipate that this decision would significantly impact our 

findings. Findings from the pilot analyses are reported in the Pilot Analyses section.  

 

4.4.2 Measures 

All variables (excluding imaging variables) as per the NDA ABCD data dictionary/Data 

Exploration and Analysis Portal (DEAP) portal field names can be found in Table 4.2 below.  

Field name(s) Description 

pds_1_p; pds_2_p; pds_3_p; pds_f4_p; 

pds_f5b_p 

Caregiver: PDS female items, which were summed to generate PDS 

total score.  

pds_1_p; pds_2_p; pds_3_p; pds_m4_p; 

pds_m5_p. 

Caregiver: PDS male items, which were summed to generate PDS 

total score 
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cbcl_scr_syn_withdep_r CBCL withdrawn-depressed syndrome subscale raw score 

age_years Age of child in years 

anthro_bmi_calc Body mass index (BMI) (DEAP field name, non-NDA) 

race.6level 
6-level derived race variable (white, black, Asian, AIAN/NHPI, other, 

mixed) 

demo_comb_income_p Household income 

asr_scr_depress_r Parental mood 

acs_raked_propensity_score 

 

Imputed raked propensity weight. The raked propensity weight 

merges the ACS and ABCD data (with missing data imputed), 

estimates the propensity model, computes and scales/trims the 

propensity weights and finally rakes the scaled weights to final ACS 

control totals by age, sex and race/ethnicity. 

 

site_id_l 

 

ABCD study site 

 

mri_info_deviceserialnumber Scanner ID 

dmri_dti_meanmotion 

 

DTI average framewise displacement in mm 

 

rel_family_id Family ID 

Table 4.2 — Name and description of study variables used in this registered report.  

Field names are the column names in the original curated ABCD data release or in the DEAP portal. 

 

4.4.2.1 Independent variable — pubertal timing measure  

Protocols previously outlined by Cheng et al., (2021) and Herting et al., (2021) were consulted 

in the preparation of the pubertal timing measures.  

 

The Pubertal Development Scale (PDS) was used to examine the perceived development of 

secondary sex characteristics such as growth spurts, body hair growth, skin changes, breast 

development and menarche in girls, and voice changes and growth of facial hair in boys. In 

line with existing work on puberty measures in the ABCD Study, and given previous research 
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showing that youth tend to over-report their perceived physical development at younger ages 

(Schlossberger et al., 1992), caregiver PDS report was utilised instead of child self-report in 

the current analysis. The PDS includes five-items, and each characteristic is rated on a 4-point 

scale (1 = no development; 2 = development has barely begun; 3 = development is definitely 

underway; and 4 = development is complete; except menstruation, which is coded 1 = has 

not begun, 4 = has begun). Thus, higher scores reflect more advanced pubertal maturation. 

We did not examine age of menarche in the current analysis due to the small number of 

females (3% and 13%) in the ABCD sample that have reached this developmental milestone 

at baseline and Year 1 data collection, respectively (Herting et al., 2021). 

 

In line with existing research on pubertal timing, the PDS total score was regressed on age for 

girls and boys separately and the standardised residual obtained constituted the continuous 

measure of pubertal timing (Dorn et al., 2006; Hamilton et al., 2014). Only participants with 

complete data for 5/5 PDS items were included in the analysis. 

 

Changes to the sample size at each stage of the quality control process can be found in Figure 

4.1. 
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4.4.2.2 Dependent variable — depressive symptoms  

Depressive symptoms (DS) for children were assessed using the Child Behaviour Check List 

(CBCL) parent report. The CBCL is one of the most widely used measures to examine 

internalising and externalising difficulties in youth (Achenbach & Rescorla, 2004). It comprises 

raw scores as well as standardised (T-scores) based on national norms in young people aged 

6-18 years. We quantified current depressive symptoms using the CBCL “withdrawn-

depressed” syndrome subscale raw scores, which examine depressive symptoms within the 

past two weeks. Raw scores were chosen over T-scores for our analyses because they reflect 

all the variation in symptoms that occur in the sample. Due to the substantial percentage of 

individuals in a normative sample who obtain low scores on the CBCL syndrome subscales, 

the T-score assignments begin at 50 which means that all individuals in the lowest 50% are 

assigned a T-score of 50. 

 

4.4.2.3 Hypothesised mediator — brain structural measures 

Brain imaging data were acquired and processed by the ABCD team. A 3T Siemens Prisma, 

General Electric 750 or Phillips scanner was used for data acquisition. A unified protocol for 

the scanning was used to harmonise between sites and scanners (Casey et al., 2018a). 

Figure 4.1 — Pubertal Development Scale quality checking decision tree at Year 1 (curated annual release 4.0). 
Notes: Master sex = Q: Sex of subject, Answer: Male, Female, Other, Not Reported 
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Protocols used for data acquisition and processing are described elsewhere (Casey et al., 

2018a; Hagler et al., 2019). In brief, T1-weighted data was acquired by magnetisation-

prepared rapid acquisition gradient echo scans with a resolution of 1×1×1 mm3, which was 

used for generating cortical and subcortical structural measures, and diffusion-weighted data 

was obtained by high angular resolution diffusion tensor imaging (DTI) scans, used for 

generating white matter microstructural measures.  

Imaging data was quality controlled according to recommended QC criteria outlined by ABCD 

in the 4.0 release notes: “MRI Quality Control (QC) and Recommended Image Inclusion 

Criteria”. ABCD have created a data structure abcd_imgincl01 that provides modality-specific 

summary imaging inclusion flags that indicate whether an individual meets all QC criteria for 

the modality, and are scored as 1 = include, 0 = exclude. These summary variables account for 

factors such as imaging QC and post-processing (see public release notes for full description). 

Public release notes are available here: 

https://nda.nih.gov/ftpDownload?id=JiZtiu3lTujb6V2rEo64cnE&ownerId=kpLEjup90qoGybQOCIG1FP

Q&ownerName=collection). We included individuals that met all the recommended inclusion 

criteria (i.e., score = 1) on the “imgincl_t1w_include” variable for the T1w data and the 

“imgincl_dmri_include” variable for the DTI data. To account for additional motion artefact in 

the DTI data, included a measure of mean framewise displacement (variable name: 

dmri_dti_meanmotion) in our DTI models. 

Three types of brain structural measures were used in the present study: grey matter cortical 

and subcortical metrics, and white matter microstructural measures. The derivation of brain 

structural measures followed a hierarchical order from global measures at the whole-brain 

level to individual structures.  

Cortical measures were generated using Freesurfer 5.3 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). Four types of cortical measures 

were used: surface area, thickness, volume and sulcal depth. First, global measures were 

generated for each cortical measure over the whole brain. The Desikan-Killiany atlas was used 

for parcellation of 34 bilateral cortical structures and 16 bilateral subcortical structures. For 

https://nda.nih.gov/ftpDownload?id=JiZtiu3lTujb6V2rEo64cnE&ownerId=kpLEjup90qoGybQOCIG1FPQ&ownerName=collection
https://nda.nih.gov/ftpDownload?id=JiZtiu3lTujb6V2rEo64cnE&ownerId=kpLEjup90qoGybQOCIG1FPQ&ownerName=collection
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
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bilateral brain structures, we generated an average measure across the left and right 

hemisphere to use in our analyses. 

White matter microstructural measures included fractional anisotropy (FA) and mean 

diffusivity (MD). Global measures of FA and MD were generated over the whole brain. The 

AtlasTrack was used to map boundaries of the 14 bilateral and 3 unilateral major tracts 

(Hagler et al., 2009). FA/MD values were then derived for each tract.  

 

4.4.3 Covariates  

Research examining how puberty is related to developmental processes and outcomes 

indicates that several factors may shape these associations . Examining variability in these 

constructs is crucial to understanding their unique contributions to developmental and 

psychological outcomes (Saragosa-Harris et al., 2022). For example, differences in 

race/ethnicity and body mass index (BMI) have been associated with early pubertal timing 

(e.g., earlier age of menarche and onset of breast development) (Biro et al., 2013; Chumlea 

et al., 2003) and an increased risk for depression (Anderson & Mayes, 2010; Quek et al., 2017). 

Further, youth raised in families with low socioeconomic status, especially those with 

significant financial hardship, are at an increased risk for psychopathology (Bradley & Corwyn, 

2002; Herting et al., 2021; Peverill et al., 2021) (as evidenced in a meta-analysis of US 

population-based studies by Peverill et al. 2021). Research has also demonstrated that 

parental mood can influence the reporting of their child’s psychopathology (Maoz et al., 

2014).  

 

Although the imaging QC protocol outlined by ABCD excluded participants with excessive 

head motion across all imaging modalities (i.e., structural and DTI), motion-related confounds 

have been found to systematically impact structural connectivity measures derived from DTI 

data (Baum et al., 2018). Children of the same age may exhibit developmental differences in 

cranial or brain size, which need be considered to determine whether regional differences are 

independent of global effects (Mills et al., 2016; O’Brien et al., 2011). While there is currently 

no consensus on whether to use intracranial volume (ICV) or whole brain volume (WBV), some 

research suggests that WBV may be a more viable measure to use as it has been found to be 
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more stable across developmental samples than ICV (Mills et al., 2016). The importance of 

controlling for site effects to account for inter-site variability has been well documented 

(Feaster et al., 2011). Although ABCD data collection took place at 21 sites, 30 different MRI 

scanners were used during data collection as some sites had more than one scanner. 

Therefore, the potential for variability across scanners is also important to consider (Saragosa-

Harris et al., 2022). As ABCD has been oversampled for twins and siblings, it is important to 

account for relatedness between individuals when using the related sample (Gelman & Hill, 

2006; Iacono et al., 2018).  

 

Taking these findings together, when modelling the relationships between pubertal timing, 

brain structure and depressive symptoms, we included the following variables as fixed effects 

in our models: age, race/ethnicity, BMI, household income; parental current mood, and a DTI 

average framewise displacement measure (for DTI models only). We included family ID and 

site (for non-imaging models) and scanner ID (for all other models) as random effects.  

 

4.4.4 Consideration of outcome neutral conditions 

Effect sizes (β values) and FDR (false discovery rate) corrected p values (where appropriate) 

were the main parameters of interest in the main analyses of the current study. The minimum 

effect size of interest, β ≥ 0.01 and a p ≤ 0.05, was considered statistically significant. This was 

informed by our previous work using the ABCD sample, which examined baseline cross-

sectional brain structural associations with depression ratings in adolescence (Shen et al., 

2021). 
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4.5 Data analysis plan 

4.5.1 Main analyses  

All analyses were conducted in R Version 4.1. and Mplus Version 8.8. Scripts for all analyses 

can be found at https://github.com/niamhmacsweeney/ABCD_puberty_depression. 

 

The analytic approach comprised two steps: H1) examine the associations between pubertal 

timing and depressive symptoms in adolescents (see Figure 4.2) and H2&3) determine 

whether brain structural measures (identified via pilot analyses, see Pilot analyses section) 

mediates this association (see Figure 4.3). All hypotheses are outlined in Table 4.1.  

 

We note that regardless of the effect sizes for our first association test (i.e., the total effect), 

we still conducted the mediation analysis in an attempt to accurately quantify any indirect 

effects (Agler & De Boeck, 2017). Further, although the models in our pilot analyses were run 

separately for males and females, and thus generated some varying ROIs, our main analyses 

used all the ROIs identified from both male and female models due to non-hypothesised sex 

differences in the current study.  

 

When testing our hypotheses, we first ran our base model and if results met our specified 

threshold for evidence (see Table 4.1), we ran our full model structure. This allowed us to 

explore whether our main associations were attenuated by the presence of additional 

covariates.  

 

Hypothesis 1 (H1): Pubertal timing -> depressive symptoms 

 

Independent variable: Pubertal timing at Year 1 (youth aged 10-11 years). This was indexed 

by the PDS, which is a continuous measure. 

 

Dependent variable: Youth current depressive symptoms at Year 3 (aged 12-13 years), as 

reported by caregiver. Depressive symptoms were indexed using the CBCL “withdrawn-

depressed” syndrome subscale, which is in count data format.  

https://github.com/niamhmacsweeney/ABCD_puberty_depression.git
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Generalised linear mixed effects models (GLM) were conducted to test the associations, using 

the ‘lmerTest’ function in R (Kuznetsova et al., 2017). Models to test H1 are listed in Table 4.3. 

 

 

 

 

 

 

 

 

 

 

Total number of tests across all levels of model adjustment: 2 (females) and 2 (males). 

Sex specific models Covariates 

(Base model) 

Covariates 

(Full model) 

   

 

Depressive symptoms ~ pubertal timing 

 

Fixed: age, race/ethnicity 

Random: family, site 

 

Fixed: age, race/ethnicity, BMI, site, 

household income, parental current 

mood 

 

Random: family, site 

 

 

Table 4.3 — Model specifications for pubertal timing and depressive symptoms association. 

 Models were conducted for males and females separately. 

Pubertal 

timing 

(Year 1) c 

Depressive 

symptoms 

(Year 3) 

Figure 4.2 — Effect of pubertal timing on depressive symptoms without considering 
mediation (c: total effect). 
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Hypothesis 2 (H2): Pubertal timing -> brain structural measures -> depressive symptoms 

 

We tested whether brain structural ROIs measured at Year 2 partially and significantly 

mediated associations between pubertal timing at Year 1 and depressive symptoms at Year 3 

(see Figure 4.3). ROIs were determined based on our pilot analyses (see Pilot analyses section) 

and are listed in Table 4.5 & Table 4.6. We note that due to the observation of bidirectional 

effects with regards to the inferior longitudinal fasciculus for pubertal timing–(increased FA) 

and depressive symptoms–(increased MD) brain structural associations in the pilot analyses, 

we excluded it as an ROI from the mediation analysis as we did not expect it to have a 

mediating effect. Pilot analyses results are reported in full in the Supplementary Data.  

 

Figure 4.3— Effect of pubertal timing on depressive symptoms including mediation of brain structure. 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=hTkkQ4
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As detailed in the Pilot analyses section (see Table 4.5 & Table 4.6), several brain structural 

measures were found to be significantly associated with pubertal timing and depressive 

symptoms, and thus informed the following hypotheses: 

 

The association between earlier pubertal timing and increased depressive symptoms would 

be mediated by: 

 

4.5.2 Global measures 

 H2a: Reduced global cortical volume, surface area, thickness and sulcal depth. 

 

 H2b: Reduced global FA 

 

4.5.3 Regional measures 

 H3a: Reduced cortical thickness in temporal regions, namely, the middle temporal 

gyrus and insula. 

 

 H3b: Reduced cortical thickness in frontal regions namely, the lateral orbito-frontal 

cortex and middle frontal gyrus. 

 

 H3c: Reduced cortical volume in temporal regions, namely, middle temporal gyrus and 

bank of the superior temporal sulcus. 

 

 H3d: Reduced cortical volume in fronto-parietal regions, namely, the middle frontal 

and postcentral gyri.  

 

 H3e Reduced FA in the cortico-striatal tract and corpus collosum. 

 

 H3f: Increased sulcal depth in the pars orbitalis 

 

 H3g: Increased cortical volume in the ventral diencephalon.  
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We ran mediation analysis using multi-level structural equation modelling (MLSEM) with 

Mplus software (Preacher et al., 2010) and via the “MplusAutomation” package in R (Hallquist 

& Wiley, 2018). MLSEM enables the stratification of within individual, between family and 

site/scanner variance, therefore allowing us to capture these random effects. 

 

This model characterised associations between pubertal timing, brain structural ROIs and 

depressive symptoms. We undertook single and multiple mediator models, depending on the 

brain ROI. Multiple mediator models allowed us to examine the proportion of variance in the 

pubertal timing-depression associations uniquely explained by all brain structural ROIs and 

allowed for comparisons between different ROIs. For this analysis, we simultaneously entered 

individual brain structural ROIs as covarying mediators. A combined cluster variable was used 

to model random effects in Mplus due to model parameter requirements.  

The primary outcomes of interest were the direct effect between the pubertal timing measure 

and depressive symptoms, and the indirect paths between these two variables that are 

mediated by brain structural ROIs. Statistical significance of this indirect effect was used to 

indicate that a significant mediation of the total effect is present. An effect was considered 

statistically significant when p ≤ 0.05 and there was a minimum effect size (β value ≥ 0.01). As 

outlined in the Consideration of outcome neutral conditions section, this minimum effect size 

was based on our previous work where effect sizes for brain structural associations with 

depression ratings in the ABCD sample were found to be in the region of 0.01-0.03 (Shen et 

al., 2021). Bootstrapping with 1000 repetitions was used to calculate robust standard errors.  

 

The Base model included age, race/ethnicity, and DTI motion as fixed effects, and family ID 

and scanner ID as random effects. The full model included the same random effects as the 

base model but with the additional fixed effects: WBV, BMI, household income, and parental 

current mood. 

 

4.5.4 Sensitivity analysis 

In addition to the main models, we conducted sensitivity analysis to examine the association 

between earlier pubertal timing and the potential change (or rather worsening) of depressive 
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symptoms between timepoints (i.e., Year 1 and Year 3), by including Year 1 depressive 

symptoms as an additional covariate in our full model as a sensitivity analysis. Further, to 

examine potential demographic and socio-economic bias in the selection of ABCD 

participants, we included a population-weighting variable in our full model that calibrates 

ABCD weighted distributions to nationally representative controls from the American 

Community Survey (ACS).  

 

4.5.5 Missing data 

Missing outcome and covariate data were handled using appropriate methods (Matta et al., 

2018). Multiple imputation by chained equations (MICE) was used to treat missing data for 

H1 using the “mice” package in R (Buuren & Groothuis-Oudshoorn, 2011). For H2 and H3, full 

information maximum likelihood (FIML) estimation in Mplus was used to handle missing data 

in our mediation analyses. As sensitivity analyses, we compared our imputed analysis 

approach to complete case analysis for H1.  

 

4.5.6 Exploratory analyses 

To identify any additional relevant brain structural measures that may not have been 

identified in the pilot analyses due to the use of baseline data only, we also undertook 

exploratory whole brain analysis to examine whether any other brain structural measures (at 

Year 2) mediated the association between pubertal timing (at Year 1) and depressive 

symptoms (at Year 3). Multiple comparison correction (FDR method) was applied using the 

“p.adjust” function in R and applied to each brain measure category separately. These 

analyses were considered post-hoc and thus reported as exploratory findings. 

 

4.5.7 Project timeline 

Our Stage One registered report obtained an in-principle acceptance in August 2022 and we 

submitted our Stage 2 manuscript for review in December 2022.   
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4.6 Pilot analyses 

4.6.1 Statistical model specifications 

Given inconsistent findings in terms of the brain regions associated with pubertal 

development and depressive symptoms in adolescence, we conducted pilot analysis on 

baseline data from the ABCD Study to identify ROIs for our second and third hypotheses. We 

note that although our main analyses used imaging data from Year 2 and depressive 

symptoms from the Year 3 follow up, the pilot analyses used baseline data only for all 

measures (N = 9,339, males = 4802, females = 4537, mean age = 9.91 years, SD = 0.62). This 

was to avoid handling any of the follow-up data given that the study is a registered report. 

Due to the non-longitudinal nature of the pilot analyses, we used complete case analysis. 

 

The pilot analyses consisted of identifying ROIs that were significantly associated with 

baseline measures of 1) pubertal timing and/or 2) depressive symptoms. An association was 

considered significant if the nominal (un-corrected) p-value ≤0.0001 for the pubertal timing-

brain models and a p-value ≤0.005 for the depression-brain models. Nominal thresholds were 

chosen since these were pilot analyses conducted to inform the main analyses. We note that 

due to the more numerous and stronger associations observed for the pubertal timing-brain 

models, a more conservative p-value threshold was chosen to limit the number of ROIs carried 

through to the main analyses.  

 

Associations between pubertal timing (indexed via PDS) and brain structural measures 

(cortical, subcortical, and white matter microstructure) were examined using GLMs via the 

‘lmerTest’ (Kuznetsova et al., 2017). Covariates included: age, race/ethnicity, WBV, DTI 

motion, (for DTI models) as fixed effects and individual ID and scanner ID as random effects.   

 

Associations between depressive symptoms and brain structural measures were examined 

using the same model specifications as described above. 

The analyses of associations with brain structural measures followed a hierarchical order from 

global measures at the whole-brain level to individual structures. For cortical measures, this 

included whole brain cortical volume, mean thickness, total surface area, mean sulcal depth, 
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followed by individual brain regions. For subcortical measures, this included volumes for 

subcortical regions as specified in the FreeSurfer segmentation. For white matter 

microstructural measures (FA/MD), the global ‘g’ measures were first tested, followed by 

individual tracts.  

 

These brain measures were examined for 1) pubertal timing and 2) depressive symptoms. 

Models were run separately for males and females. See Table 4.4 for model specifications. 

 

Type Measures Number of variables 
Covariates 

(Base model) 

Global 

brain 

measures 

Mean whole-brain cortical thickness 1 unilateral 

Fixed: Age + 

race/ethnicity. 

 

Random: Family ID 

+scanner ID  

Total whole-brain surface area 1 unilateral 

Mean whole-brain sulcal depth 1 unilateral 

Total whole-brain volume 1 unilateral 

Global total white matter fractional 

anisotropy 
1 unilateral 

Global total white matter mean 

diffusivity 
1 unilateral 

Regional brain 

measures 

Cortical thickness 34 bilateral Fixed: Age + 

race/ethnicity + 

WBV. 

 

Random: Family ID 

+scanner ID 

Cortical surface area 34 bilateral 

Cortical sulcal depth 34 bilateral 

Cortical volume 

 

Subcortical regions 

34 bilateral 

 

16 bilateral 

White matter fractional anisotropy 14 bilateral, 3 unilateral Fixed: Age + 

race/ethnicity + DTI 

motion. 

 

Random: Family ID 

+scanner ID 

White matter mean diffusivity 14 bilateral, 3 unilateral  

Table 4.4 — Pilot analyses: Model specifications for brain structural measures. 

To examine pubertal timing ~ brain structure associations, we ran 6 models for global brain 

measures, and 184 models for regional brain measures for males and females separately.  
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To test associations between depressive symptoms and brain structure, we ran 6 models for 

global brain measures and 184 models for regional brain measures for both males and 

females separately. 
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4.7 Pilot results  

The association between pubertal timing and brain structural measures at baseline 

 

Global brain metrics  

Earlier pubertal timing was associated with lower global cortical thickness and sulcal depth in 

females (β range: -0054 to -0.066; puncorrected: = 5.55x10-6 to 5.12x10-5). No significant 

relationships were found in males.  

 

Regional brain metrics  

For females, earlier pubertal timing was associated with decreased cortical thickness and 

volume in temporal and frontal regions, and increased cortical volume in the ventral 

diencephalon (β range: -0.0425 to 0.0931; puncorrected range: 6.73x10-7  to 0.0001) (see Table 

4.5 and Figure 4.4).  

 

For males, earlier pubertal timing was also associated with decreased cortical thickness in the 

lateral orbitofrontal cortex (β: -0.0525; puncorrected : 0.0001) (see Table 4.5). 

 

Regions meeting criteria for ROIs (p≤0.0001) are reported in Table 4.5 and illustrated in Figure 

4.4. See Supplementary Data 1&2 for full details of all models for males and females, 

respectively.  

  

Figure 4.4 — 
Pilot results: 
Cortical and 
subcortical 
regions of 
interest for 
the pubertal 
timing ~ 
brain 
structure 
association. 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=hTkkQ4
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Pubertal timing Brain Structure beta std t.value puncorrected 

Females      

PDS 

Global cortical 

thickness 

-0.0659 0.0145 -4.5476 5.55x10-6 

Global sulcal depth -0.0540 0.0133 -4.0536 5.12x10-5 

Insula (thickness) -0.0663 0.0148 -4.4816 7.58x10-6 

Lateral orbitofrontal 

cortex (thickness) 

-0.0635 0.0150 -4.2293 2.39x10-5 

Middle temporal 

gyrus (thickness) 

-0.0708 0.0142 -4.9754 6.73x10-7 

Medial orbitofrontal 

cortex (thickness) 

-0.0640 0.0148 -4.3262 1.55x10-5 

Rostral middle frontal 

gyrus (thickness) 

-0.0696 0.0149 -4.6687 3.11x10-6 

Bank of the superior 

temporal sulcus 

(volume) 

-0.0545 0.0129 -4.2148 2.54x10-5 

Caudal middle frontal 

gyrus (volume) 

-0.0449 0.0120 -3.7279 0.0001 

middle temporal 

gyrus (volume) 

-0.0425 0.0105 -4.0528 5.14x10-5 

 Ventral diencephalon 

(volume) 

0.0931 0.0101 9.2557 3.12x10-20 

Males      

PDS 

 

Lateral orbitofrontal 

cortex (thickness) 

-0.0525 0.0141 -3.7237 0.0001 

Table 4.5 — Pilot results: Pubertal timing-brain structure models and associated statistics with significant ROI 
associations. 
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The association between depressive symptoms and brain structural measures at baseline 

 

Global brain metrics  

Increased depressive symptoms were associated with reduced global cortical volume and 

surface area for males and females and reduced global FA for females only (β range: -0.0636 

to -0.0290; puncorrected range: 5.67x10-8 to 0.0037). No significant relationships were observed 

in males.  

 

Regional brain metrics  

For females, increased depressive symptoms were associated with lower FA in the corpus 

callosum and parietal superior cortico-striate tract, and increased sulcal depth in the pars 

orbitalis (β range: -0.0280 to 0.0375; puncorrected range: 0.0051 to 0.0057).  

 

For males, increased depressive symptoms were associated with decreased cortical surface 

area and volume in the postcentral gyrus, and reduced volume in the middle temporal gyrus 

(β range: -0.0256 to -0.0285; puncorrected range: 0.0014 to 0.0042).  

 

Regions that met criteria to be classified as ROIs (uncorrected p-value ≤0.005) are shown in 

Table 4.6. Cortical ROIs are also illustrated in Figure 4.5. Please see Supplementary Data 3&4 

for a complete list of all depression-brain structure models and associated statistics.  

 

 

 

 

 

Figure 4.5 — Pilot results: Cortical and subcortical regions of interest for the depressive symptoms ~ brain structure 
association. Note: DTI ROIs (corpus callosum and parietal superior corticostriate tract) are not illustrated in Figure 5.5 but 
listed in Table 4.6.  

 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=hTkkQ4
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Depressive 

Symptoms 

Brain Structure beta std t.value puncorrected 

Females      

CBCL Withdrawn 

Depressed (raw 

score) 

Global surface area -0.0396 0.0122 -3.2330 0.0012 

Global cortical volume -0.0393 0.0122 -3.2238 0.0013 

Global FA -0.0290 0.0100 -2.9071 0.0037 

Pars orbitalis 

(Sulcal depth) 
0.0393 0.0133 2.9420 0.0033 

Corpus Callosum (FA) -0.0280 0.0101 -2.7656 0.0057 

Parietal superior 

corticostriate (FA) 
-0.0327 0.0117 -2.7990 0.0051 

Males      

 

 

CBCL Withdrawn 

Depressed (raw 

score) 

Global cortical surface 

area 
-0.0607 0.0118 -5.1263 3.06x10-7 

Global cortical volume -0.0636 0.0117 -5.4364 5.67x10-8 

Postcentral gyrus 

(surface area) 
-0.0256 0.0090 -2.8623 0.0042 

Middle temporal gyrus 

(volume) 
-0.0283 0.0089 -3.1887 0.0014 

Postcentral gyrus 

(volume) 
-0.0285 0.0093 -3.0636 0.0022 

Table 4.6 — Pilot results: Depressive symptoms ~ brain structure models and associated statistics with 
significant ROI associations. 
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4.8 Main results  

Sample characteristics are presented in Table 4.7 

 

Table 4.7 — Main results: 
Descriptive statistics for sample. Y1 = 
year 1; Y2 = year 2; Y3 = year 3. Youth 
depressive symptoms = CBCL 
withdrawn depressed total raw 
score; AIAN/NHPI = American 
Indian/Alaska Native/Native 
Hawaiian and other Pacific Islander; 
Household income = yearly gross 
household income; DTI mean FD = 
mean framewise displacement from 
year 2 DTI data; Parent depressive 
symptoms = Depressive Problems 
ASR DSM-5-Oriented Scale. 
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Frequencies for perceived pubertal development and youth depressive symptoms, based on 

parent report, are shown in Figure 4.6 

 

  

408

1701

482

983

1469

246
333

27

F= 16
M= 2

A B

C D

Figure 4.6 —Main results: Frequencies (N) for parent summary scores from the Pubertal Development Scale (PDS). 
(A) Total pubertal development score; (B) PDS Category score counts ranging from pre- to post- pubertal. Note 
that PDS category score (variables: “pds_p_ss_female_category” and “pds_p_ss_male_category” data were not 
available for 60 participants in ABCD release 4.0 so N = 5667 (full sample N = 5727) for Figure 4.6b. (C) Gonadal 
score averaging gonadal PDS items and ranging from 1 = not begun to 4 = complete; (D) Adrenal score averaging 
adrenal PDS items ranging from 1 = not begun to 4 = complete. 
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4.8.1 A note on the interpretation of effect sizes 

Given that our outcome (youth depressive symptoms) is a count variable (with a Poisson 

distribution), it was not standardised in our main analyses. However, due to the large variance 

observed across our variables (especially the imaging variables), all other numeric variables 

(except the population weight propensity score) were converted to z-scores before running 

our models to ensure consistency across our hypotheses. Therefore, unless otherwise stated, 

the estimated ß values should be interpreted as follows: for one unit change in the predictor 

variable, the difference in the logs of the expected counts is predicted to change by the 

respective ß value, given that the other predictor variables in the model are held constant. To 

further aid the interpretation of our main results, we report incidence rate ratios (IRR) 

alongside the ß values and associated p-values. The incidence rate ratio is the exponential of 

the reported ß coefficient and can be interpreted as a relative risk.  

 

4.8.2 Hypothesis 1 

Our first hypothesis tested whether earlier pubertal timing at year 1 (youth aged 10-11 years) 

is associated with higher depressive symptoms at year 3 (youth aged 12-13). Our analyses 

demonstrate support for this hypothesis such that both females and males who started 

puberty earlier than their peers were more likely to report higher depressive symptoms two 

years later. Basic model: Females: ß = 0.27; [IRR = 1.31]; p < 2 x 10-16; males: ß = 0.08 [IRR = 

1.09]; p = 0.005. In our fully adjusted model, which included additional covariates (BMI, 

household income, and parental depressive symptoms), our main effect size attenuated 

slightly for females (ß = 0.20 [IRR = 1.22], p < 2 x 10-16). However, the observed effect size for 

males (ß = 0.04; [IRR = 1.045], p = 0.15) no longer met the threshold for evidence (as per the 

definition outlined in Table 4.1) when these additional factors were accounted for in our 

model. The results (reported using IRRs) for Hypothesis 1 for females and males (base and 

fully adjusted models) are illustrated in Figure 4.7. All statistics (e.g., ß values, IRRs, standard 

errors, and p values) for Hypothesis 1 are reported in Tables S1 & S2 in the Supplementary 

information.  

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=qVEQCv
https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=qVEQCv
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Figure 4.7— Main results: Incidence Rate Ratios (IRRs) for the association between pubertal timing and youth depressive symptoms. Results for females are shown in (A) 
and males are shown in (B). Base models are shown in top panel and fully adjusted models are presented in the bottom panel. The neutral line or vertical intercept line is 
shown in bold and indicates no effect. Blue IRRs indicate a greater depression risk while red IRRs represent a decreased depression risk. Error bars represent 95% confidence 
intervals.
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4.8.3 Exploratory analyses related to Hypothesis 1 

To explore whether there were specific aspects of pubertal development that were driving 

the association between earlier pubertal timing and increased depression risk, we examined 

adrenal and gonadal PDS items separately and generated an average score for each. As 

previously described by Shirtcliff et al., 2009, and adopted by others using the ABCD puberty 

data (e.g., Herting et al., 2021), a gonadal PDS score was generated for females by averaging 

growth spurt, breast development and menarche PDS items (variables: pds_1_p, pds_f4_p, 

pds_f5b_p), and for males by averaging growth spurt, deepening of voice, and facial hair PDS 

items (variables: pds_1_p, pds_m4_p, pds_m5_p). Adrenal PDS scores were calculated for 

both sexes by averaging pubic, body hair and skin changes PDS items (pds_2_p, pds_3_p). A 

pubertal timing score for adrenal and gonadal measures was then obtained by regressing the 

adrenal and gonadal PDS scores on age, and using the residual obtained as the timing 

measure. This was done for males and females separately.  

 

Using the same model set up as H1, we ran two independent models with adrenarcheal timing 

(AT) and gonadarcheal timing (GT) scores as predictors. For females, both AT and GT were 

significantly associated with later youth depression (Base model: AT: ß = 0.23 [IRR = 1.26]; p 

< 0.001; GT: ß = 0.24 [IRR = 1.28]; p < 0.001), and these effects remained significant in the 

fully adjusted model (AT: ß = 0.17 [IRR = 1.18]; p < 0.001; GT: ß = 0.17 [IRR = 1.19]; p < 0.001). 

For males, only AT was significantly associated with later youth depression (Base model: AT: 

ß = 0.10 [IRR = 1.11]; p = 0.001; GT: ß = 0.05 [IRR = 1.04]; p = 0.154). Neither association was 

significant in the fully adjusted model for males. Results are reported in full in Tables S3-S6 in 

the Supplementary Information.  

 

As further post-hoc analysis, we included both GT and AT scores in the same model (base 

model specification) to investigate whether one aspect of pubertal development was 

significantly associated with later youth depression, above and beyond the other. First, 

Spearman’s rank correlation was computed to assess the relationship between AT and GT 

measures (Females: Spearman's 𝜌 = 0.61; Males: Spearman's 𝜌 = 0.44). Model 

specifications: 𝑦𝑜𝑢𝑡ℎ 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑔𝑜𝑛𝑎𝑑𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 + 𝑎𝑑𝑟𝑒𝑛𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 + 𝑎𝑔𝑒 + 𝑟𝑎𝑐𝑒 +

 1| 𝑠𝑖𝑡𝑒 𝐼𝐷 + 1| 𝑓𝑎𝑚𝑖𝑙𝑦 𝐼𝐷. 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=qVEQCv
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Our results suggest that, in females, both GT and AT contribute significantly to the association 

between earlier pubertal timing and youth depression (GT, controlling for AT, ß = 0.18 [IRR = 

1.19]; p < 0.001; AT: ß = 0.12 [IRR = 1.13]; p = 0.001). We note here that the effect size for GT 

is slightly larger than AT. For males, our results suggest that the association between earlier 

pubertal timing and later youth depression is being driven by AT rather than GT (GT 

controlling for AT, ß = -0.006 [IRR = 0.994]; p = 0.85; AT: ß = 0.10 [IRR = 1.11]; p = 0.003). 

Results are reported in full in the Supplementary Information, Tables S7 and S8.  

 

4.8.4 Hypothesis 2 — global brain measures 

Our second hypothesis tested whether global brain structural measures at year 2 (specifically, 

lower global volume, cortical thickness, surface area, and sulcal depth (H2a) and FA (H2b)) 

mediated the association between earlier pubertal timing at year 1 and higher depressive 

symptoms at year 3. In both females and males, we did not find support for these hypotheses 

in the current analyses due to the absence of an indirect effect (Females: H2a: ß = -0.001 [IRR 

= 0.99], p = 0.89; H2b: ß = 0.001 [IRR = 1.00], p = 0.57; Males: H2a: ß = 0.003 [IRR = 1.00], p = 

0.43; H2b: ß = -0.001 [IRR = 0.99], p = 0.39) from our predictor (pubertal timing) to our 

outcome (youth depressive symptoms) through our hypothesised mediator (brain structure).  

 

4.8.5 Hypothesis 3 — regional brain measures  

Our third hypothesis investigated whether regional brain structural measures at year 2 

(identified via our pilot analyses and listed in Table 4.1) mediated the association between 

earlier pubertal timing at year 1 and later youth depressive symptoms at year 3. Overall, for 

both females and males, our results did not find support for our hypotheses due to an absence 

of an indirect effect (Females: ß range: -0.008 to 0.004 [IRR range = 0.99 to 1.00], p range: 

0.05 to 0.89; Males: ß range: -0.004 to 0.003 [IRR range = 0.99 to 1.00], p range: 0.27 to 0.85). 

Of note, H3a, that reduced cortical thickness mediates the association between earlier 

pubertal timing and increased youth depression, partially met our threshold for evidence (ß 

≥ 0.01, p ≤ 0.05) such that the p value was marginally within the criteria, but the ß value was 

not (ß = -0.008, p = 0.05). Given the proximity of this p value to our predefined threshold for 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=qVEQCv


4| The Role of Brain Structure in the Association Between Pubertal Timing and Depression 
Risk 

 105 

evidence (outlined in Table 4.1) and the very small observed effect size, we did not consider 

this support for our H3a hypothesis.  

 

All model statistics, including the direct and total effects, for single and multiple mediator 

models for Hypotheses 2 and 3 are reported in full in Supplementary Data 5 & 6 (females) and 

7 & 8 (males). We have also included the Mplus output files for all models in the 

Supplementary Information for this registered report.  

 

4.8.6 Exploratory analyses related to Hypothesis 2 & 3  

We undertook exploratory analyses to identify any additional brain structural measures that 

may mediate the association between earlier pubertal timing and later increased depressive 

symptoms. Further, we also wanted to identify brain structural features related to pubertal 

timing and depressive symptoms in this large sample of early adolescents. We re-ran the base 

models specified in the pilot analyses (with the removal of WBV a covariate due to its 

potential effect on regional brain estimates (Mills et al., 2016)) using pubertal timing data 

from year 1, imaging data from year 2, and depressive symptom data from year 3. For this 

exploratory analysis, we used the base model set up (as per the approach taken in our pilot 

analyses), so that the models were consistent across the pilot and main analyses. 

 

4.8.6.1 Whole brain exploratory analyses: Brain structural associations with pubertal 

timing  

Standardised beta values for the pubertal timing — brain structure associations that remained 

significant after correction for multiple comparison (pFDR ≤0.001) are reported here in the 

main text. Relevant statistics (ß values, standard errors, uncorrected and corrected p-values) 

for all pubertal timing – brain structure models are reported in Supplementary Data 9 

(females) & 10 (males). 

 

For females, we found that earlier pubertal timing was associated with reduced global cortical 

thickness (ß = -0.10; pFDR = 4.4x10-5) and global cortical volume (ß = -0.09; pFDR = 1.3x10-5). 

Regionally, earlier pubertal timing was associated with reduced cortical thickness and volume 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=ny4KUo
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=ny4KUo
https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=ny4KUo
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in temporal, frontal and parietal regions (ß range: -0.12 to -0.08; pFDR range: 2.2x10-6 to 

0.0008). See Figure 4.8. 

 

 

Figure 4.8 — Exploratory results: Significant cortical associations with earlier pubertal timing in female youth. 
pFDR ≤ 0.001.  

 

For males, earlier pubertal timing was not significantly associated with global brain measures. 

The only regional brain measure that demonstrated a significant association with earlier 

pubertal timing was the increased volume of the ventral diencephalon (ß = -0.07; pFDR = 

0.001).  

 

4.8.6.2 Brain structural associations with depressive symptoms  

Beta values for the brain structure – depression symptoms associations that remained 

significant after correction for multiple comparison (pFDR ≤0.05) are reported in the main text. 

We note that a less conservative threshold for multiple comparison correction was used here 

compared to the pubertal timing — brain structure models due to the more numerous and 

stronger associations found for the latter association. Relevant statistics for all brain structure 

— depression models can be found in Supplementary Data 11 (females) & 12 (males).  

 

For females, no significant associations were found between global brain measures and 

depressive symptoms. However, our results demonstrated several significant regional 

associations with depression, namely, reduced volume in the accumbens area (ß = -0.105 [IRR 

= 0.90], pFDR = 0.024, increased sulcal depth in the bank of the superior temporal sulcus (ß = 

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EhlAOKI30bZIuMrxATQgOhYBiXnVJqnyQ8yfUlsfqN3mWw?e=ny4KUo
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0.133 [IRR = 1.14], pFDR = 0.003) and precuneus (ß = 0.12 [IRR = 1.12], pFDR = 0.020), as well as 

increased MD in the inferior fronto-occipital fasciculus (ß = 0.11 [IRR = 1.12], pFDR = 0.050).  

 

For males, we did not find any significant associations between global brain measures and 

depression symptoms. Regarding regional associations, depressive symptoms were 

associated with reduced volume in the accumbens area (ß = -0.10 [IRR = 0.90], pFDR = 0.012), 

pallidum (ß = -0.08 [IRR = 0.92], pFDR = 0.052), and thalamus (ß = -0.08 [IRR = 0.92], pFDR = 

0.056), as well as reduced surface area in the medial orbitofrontal gyrus (ß = -0.11 [IRR = 0.89], 

pFDR = 0.029).  

 

4.8.6.3 Exploratory mediation analysis  

Unlike the pilot analyses, whereby we included any ROIs that were associated with increased 

depressive symptoms and/or earlier pubertal timing, we adopted a more streamlined 

approach in our exploratory analyses given that we had full access to the data and any findings 

would be reported as post-hoc. Therefore, we included any ROI that demonstrated a 

significant association (after correction for multiple comparisons, specified above) with both 

earlier pubertal timing at year 1 and increased depressive symptoms at year 3. The only brain 

measure that met this criterion was lower volume of the accumbens area in females. Model 

1: Accumbens area ~ pubertal timing (Y ~ X): ß = -0.086, pFDR = 0.001); Model 2: Depressive 

symptoms ~ accumbens area (Y ~ X): ß = -0.105, pFDR = 0.02). In males, lower accumbens area 

volume was associated with increased depressive symptoms (ß = -0.104, pFDR= 0.013) but not 

with pubertal timing (ß = -0.02, pFDR= 0.36). However, for completeness, we tested whether 

the accumbens area mediated the association between earlier pubertal timing and later 

depression in both females and males.  

 

For both females and males, we did not find any evidence of a mediating effect of accumbens 

area volume on the association between earlier pubertal timing and increased depressive 

symptoms (Females indirect effect: ß = 0.005, p = 0.14; Figure 4.9a; Males indirect effect: ß = 

0.004, p = 0.09; Figure 4.9b).  
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4.8.6.4 Additional mediation  

Given that the current findings did not provide support for a mediating effect of brain 

structure on the association between earlier pubertal timing and later youth depression, we 

undertook post-hoc analyses to investigate whether other factors may have a mediating 

effect. While a host of factors could have been tested, given that exploratory analysis was not 

the primary focus of this registered report, we decided to only examine variables already 

included in the study design. Given that pubertal timing and parental depression 

demonstrated the strongest associations with our outcome of interest, we examined whether 

rather than being a predictor, pubertal timing mediated the association between early risk 

factors for depression, namely, parental depression and youth depression. Thus, we 

investigated whether pubertal timing at year 1 (youth aged 10-11 years) mediated the 

association between parental depression at baseline (youth aged 9-10 years) and youth 

depression at year 3 (youth aged 12-13 years).  

 

As illustrated in Figure 4.10, we found that earlier pubertal timing mediated (indirect effect: 

ß = 0.014, p = 0.002) the positive association between parental depression and later youth 

depression in females only.  
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Figure 4.9 — Exploratory results: Mediation paths and statistics for main effect of pubertal timing and depressive 
symptoms, mediated through accumbens area volume. Results for females are shown in (A) and males are shown in (B).  
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4.8.7 Missing data  

For H1, we imputed missing outcome and covariate data using multiple imputation by chained 

equations. Compared to complete case analysis, similar effect sizes were observed when 

missing data was imputed (see Tables S9 & S10 in the Supplementary Information). Details of 

our imputation methods can be found in the Supplementary Information.  

 

4.8.8 Sensitivity analysis  

We examined the association between earlier pubertal timing and the potential change (or 

rather worsening) of depressive symptoms between timepoints (i.e., Year 1 and Year 3) by 

including Year 1 youth depressive symptoms as an additional covariate in our base and fully 

adjusted models. For females, we found that earlier pubertal timing was significantly 

associated with the worsening of depressive symptoms over time (Base model: ß = 0.17 [IRR 

= 1.17]; p <0.001; fully adjusted model: ß = 0.16 [IRR = 1.73]; p <0.001). For males, earlier 

pubertal timing was not significantly associated with the worsening of depressive symptoms 

over time (Base model: ß = 0.05 [IRR = 1.05]; p =0.06; fully adjusted model: ß = 0.05 [IRR = 

1.05]; p = 0.06). Base and fully adjusted models for females and males are reported in full in 

Tables S11 and S12 in the Supplementary information.  

Figure 4.10 — Exploratory results: Mediation paths and statistics for main effect of parental depression and youth 
depressive symptoms, mediated through pubertal timing. Results for females are shown in (A) and males are shown 

in (B). ✢ = effect size controlling for parental depression. 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=0gzEyd
https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=0gzEyd
https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=0gzEyd
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We also found that when a population stratification variable was added to our full model as 

a regression weight, our main effects were similar to the main analysis. However, the addition 

of the population weight in our models did inflate the effect sizes of some factor levels in our 

race/ethnicity variable, which may be due to a mismatch between the representation of this 

ethnicity in the US population versus the ABCD sample. See Supplementary Information, 

Tables S13 (females) and S14 (males).  

 

  

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EX_o6923cmNCgoxeWoEtbD8BZoJX1FnKWpxADqIr1pVohA?e=0gzEyd
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4.9 Discussion  

In the present study, we investigated whether earlier pubertal timing is associated with an 

increased risk for later depressive symptoms in adolescence, and whether certain a priori 

brain structural measures mediated this association, in a large, demographically diverse 

sample of youth. We found that earlier pubertal timing when youth were aged 10-11 years 

was significantly associated with increased depressive symptoms two years later, when youth 

were aged 12-13 years. Thus, the first hypothesis of this registered report was supported. 

Although this association was found in both female and male youth, the observed association 

was stronger for female adolescents compared to males. Further, in females but not males, 

this association remained significant when controlling for other factors associated with 

depression risk, such as family income, parental depression, and BMI. On the other hand, we 

did not find evidence that the hypothesised brain structural measures (Hypotheses 2 & 3) 

mediated the association between earlier pubertal timing and later depressive symptoms. 

 

Our exploratory analyses demonstrated brain structural associations with earlier pubertal 

timing and youth depressive symptoms, although the effects were more numerous and 

widespread between pubertal timing and brain structure. Of note, we also did not find any 

evidence of brain structural mediation when examining regions beyond those specified a 

priori. However, when we broadened the lens taken to investigate depression risk within this 

sample, our post-hoc analyses revealed that earlier pubertal timing mediated the association 

between parental depression and increased youth depressive symptoms. 

 

The current results advance our understanding of how pubertal timing relates to brain 

structural maturation and depression risk beyond age-related changes using one of the 

largest available samples to date. Taken together, the findings of this registered report 

suggest that while a robust association exists between earlier pubertal timing and increased 

depressive symptoms, particularly for females, brain structure does not mediate this 

association. Our results highlight the need to consider additional biological factors (e.g., 

genetics), other brain metrics (e.g., brain function, brain age gap estimates (AGE)) and socio-

environmental risk factors, when examining the association between earlier pubertal timing 
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and increased depression risk, and the differential impact they may have across sexes. Given 

the significant burden of depression in adolescence and beyond, further research is urgently 

needed in this area so that we can better understand how to support young people as they 

navigate this formative developmental transition.  

 

4.9.1 Earlier pubertal timing is associated with later youth depressive 

symptoms 

A substantive body of evidence has demonstrated that youth that begin puberty ahead of 

their peers are at an increased risk of psychopathology, including depression. Using one of 

the largest sample sizes to date (N = ~ 5,300), our findings extend prior work and emphasise 

the detrimental effects of accelerated pubertal maturation on youth mental health outcomes. 

On a high-level, our findings lend some support to the maturation disparity hypothesis that 

has been proposed to explain the effects of early pubertal timing on psychopathology risk 

(Brooks-Gunn et al., 1985; Ge et al., 2001; Ge & Natsuaki, 2009). This conceptual model does 

not explicitly predict sex differences and posits that both early maturing males and females 

are at an increased risk for mental health difficulties during adolescence due to an 

incongruency in their physical, cognitive, social, and emotional development. Findings from a 

recent meta-analysis by Ullsperger and Nikolas (2017) provide the strongest empirical support 

for this conceptual framework. This pattern of results has also been replicated in recent 

studies, whereby early pubertal timing was found to predict the onset and recurrence of 

depression in male and female adolescents (Hamlat et al., 2020; McNeilly et al., 2022).  

 

Although we found significant associations between earlier pubertal timing and increased 

depressive symptoms in both sexes, the magnitude of effect was consistently greater in 

females. Importantly, at the time pubertal development was assessed in our study (youth 

aged 10-11 years), most males were pre-pubertal or in the early stages of puberty, while the 

females exhibited a much broader spread of pubertal maturation. Thus, the greater 

magnitude of effect for pubertal timing and later psychopathology in females that we 

observed could reflect a temporal effect, such that the distress associated with the experience 

of maturing ahead of your peers does not manifest straight away. This reasoning may explain 

why the youth that are most pubertally mature in our sample (i.e., the females) exhibit a 
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stronger association with depressive symptoms. Further, our sensitivity analyses revealed 

that when earlier depressive symptoms were included in our model, earlier pubertal timing 

was associated with the worsening of symptoms (between ages 10-11 years and 12-13 years) 

in females but not males, which may reflect the significantly higher incidence of depressive 

symptoms in females compared to males in the current sample.  

 

Another possible explanation for the difference in magnitude of effect between sexes, is that 

there are distinct biological processes underpinning the composite early pubertal timing 

effect on psychopathology. Rather than using a global measure of pubertal timing, our 

exploratory analyses examined how specific aspects of pubertal timing, namely, adrenarcheal 

and gonadarcheal timing were associated with depressive symptoms. Our results 

demonstrated that both aspects of pubertal timing were associated with depressive 

symptoms in females, which is consistent with prior findings (Barendse et al., 2021). However, 

when looking at males, a significant association was found between depressive symptoms 

and adrenarcheal timing but not gonadarcheal timing. This suggest that in the current sample 

of early adolescent males, the observed association between early pubertal timing and later 

depressive symptoms was being driven by adrenarcheal aspects of pubertal maturation, 

which occur earlier than gonadarcheal changes. 

 

Taken together, these findings indicate that gonadarcheal processes may strengthen the 

association between earlier pubertal timing and depressive symptoms in adolescence. 

However, additional follow up data in males is needed to properly test this hypothesis. Of 

note, while the males and females in the ABCD sample are the same chronological age, there 

are marked differences in their pubertal progression. Thus, if we examined the association 

between pubertal timing and depressive symptoms in males when they are at the same 

“pubertal age” as females (i.e., when they are one or two years older), the same 

gonadarcheal/adrenarcheal effect may be observed. As multiple timepoints of ABCD data 

become available across adolescence, longitudinal modelling (e.g., latent growth curve 

analysis) should be used to test sex differences in pubertal timing, as well as tempo, and their 

relation to depression risk.  
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Crucially, the measures of adrenarcheal and gonadarcheal timing used in our analysis were 

proxy measures for underlying hormonal changes, where there is a known temporal delay 

between fluctuations in hormone changes and the associated physical changes (Bordini & 

Rosenfield, 2011). Recent research by Barendse & Byrne et al., 2021, using a multiverse 

analysis approach (in a female sample only), did not find an association between hormone-

based pubertal timing measures and increased risk for internalising psychopathology. The 

authors conclude that hormone-based measures of pubertal timing may not contribute to the 

aspects of pubertal timing that are associated with adolescent mental health difficulties. 

While examining hormonal assays of pubertal maturation was beyond the scope of this 

registered report, as previously mentioned, myriad biological and socio-environmental 

factors are likely to moderate or mediate the observed effects. An important next step for the 

field will thus be to broaden the scope of existing multiverse approaches so that they explore 

direct and indirect effects associated with multi-modal measures of pubertal timing and 

psychopathology across sexes, and crucially, how they develop over time.  

  

It must also be noted that the work of others, including meta-analytic findings from Ullsperger 

and Nikolas (2017), has shown that sex does not moderate the association between pubertal 

timing and depression risk in adolescence (Hamlat et al., 2020; McNeilly et al., 2022). For 

example, using baseline data from ABCD, McNeilly and Saragosa-Harris et al. (2022) have 

recently shown that the effect sizes in the association between earlier pubertal timing and 

internalising difficulties are similar in male and female youth aged 9-10 years. However, a 

direct comparison of results is difficult given differences in how pubertal timing is defined and 

measured across studies. Like the current study, some studies (e.g., Barendse et al., 2021), 

quantify pubertal timing using the residual obtained from regressing a pubertal development 

score on age. Then, depending on the model outcome (e.g., depression), age is often added 

as an additional covariate to examine the association between the predictor (e.g., pubertal 

timing) and the outcome beyond age related changes. However, other studies (e.g., McNeilly 

et al., 2022) have quantified pubertal timing via pubertal development summary scores (e.g., 

higher PDS scores = earlier pubertal timing) and use age as a covariate in their models. While 

such approaches may be appropriate when the age range of the sample is narrow 

(Vijayakumar et al., 2018), the significant heterogeneity in how pubertal timing and age-



4| The Role of Brain Structure in the Association Between Pubertal Timing and Depression 
Risk 

 115 

related effects are assessed, may explain the inconsistencies (e.g., sex differences) reported 

in the literature. Fortunately, the ongoing emphasis on protocol papers that outline 

considerations for researchers studying pubertal development, such as that by Cheng and 

colleagues (2021), will greatly aid the harmonisation of analysis pipelines and make result 

comparison easier. 

 

It may also be that the inconsistent findings in the current literature reflect a general direct 

effect between earlier pubertal timing and depressive symptoms that is comprised of sex-

specific vulnerabilities that vary in magnitude across adolescence. For example, previous 

research has shown that ethnicity, life stress, and cognitive processes (e.g., rumination) 

moderate the risk of earlier pubertal timing for later psychopathology according to sex (Alloy 

et al., 2016; Hamilton et al., 2014). Indeed, the findings of the current study underscore the 

importance of considering this nuance. While our base models were significant across males 

and females, important sex-differences emerged when additional socio-environmental risk 

factors (e.g., BMI) were controlled for in our models. This provides further evidence to suggest 

that while early maturing youth are at an increased risk for depression in adolescence, there 

may be sex-specific biological and social/environmental mechanisms that influence this risk. 

Future research that adopts a biopsychosocial conceptual framework is needed to refine 

existing theories so that they better reflect the complex interplay of risk (and resilience 

promoting) factors that underpin the association between pubertal timing and 

psychopathology in adolescence (Ullsperger & Nikolas, 2017).  

 

4.9.2  Brain structure does not mediate the association between earlier 

pubertal timing and later depressive symptoms  

In this study, we did not find that cortical, subcortical, or white matter microstructural 

measures mediated the association between earlier pubertal timing and increased depressive 

symptoms in adolescents. This absence of a mediating effect was observed in both the brain 

structural measures originally hypothesised, and tested in our confirmatory analyses, as well 

as those examined in our exploratory analyses. Together, these results suggest that although 

pubertal timing is associated with alterations in brain morphology above and beyond age-

related changes, these brain structural features do not appear to mediate the increased risk 
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for later depressive symptoms in early developing youth. Future work should explore whether 

other neuroimaging features, such as brain function, which has been largely understudied in 

the field (Pfeifer & Allen, 2021), mediates the association between earlier pubertal timing and 

depression risk. 

 

Importantly, our exploratory work extends existing research by examining brain structural 

associations with pubertal timing in the largest available sample to date (N = ~5,000). 

Crucially, our analyses pertain to brain structural associations with pubertal timing specifically 

which is distinct from examining pubertal development controlling for age, although as 

discussed, this distinction is often overlooked in the extant literature. In line with existing 

research, we found that earlier pubertal timing was associated with lower global cortical 

volume and thickness. Moreover, our results demonstrated regional reductions in cortical 

volume and thickness in both frontal (e.g., middle frontal gyri), temporal (e.g., the insula, bank 

of the superior temporal sulcus), and parietal regions (e.g., the precuneus, inferior and 

superior parietal gyri, paracentral gyrus), which is consistent with prior findings that have 

used both physical and hormonal pubertal measures (Goddings et al., 2019; Vijayakumar et 

al., 2018). Further, we also found that a decrease in the volume of the nucleus accumbens 

was related to earlier pubertal timing which replicates earlier work (Goddings et al., 2014). 

Although a positive association between pubertal timing and FA has been reported previously 

(Herting et al., 2012; Peper et al., 2015), we did not find that white matter microstructure was 

associated with pubertal timing in the current sample.  

 

It is important to note however, that the above findings were for female adolescents only and 

the only significant association between earlier pubertal timing in males was with increased 

volume of the ventral diencephalon. One possible interpretation of this pattern of results is 

that there is a temporal delay between hormonal changes and downstream effects on brain 

structure, and due to differences in the age of puberty onset between sexes, we do not yet 

see brain structural effects in males. Our pilot analyses provide some preliminary evidence 

for this interpretation such that we observed increased volume of the ventral diencephalon 

in females at ages 9-10 years but not in males at the same age, and we see the opposite 

pattern of results a year later in our main analyses. Given that the ventral diencephalon 
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houses the hypothalamus, the key endocrine structure responsible for the surge in gonadal 

hormones during puberty, the temporal differences we see in volumetric increases across 

males and females may reflect these distinct pubertal maturation timelines. Future 

longitudinal work is needed to further understand how pubertal timing affects brain 

structural development over time, which will help elucidate whether the sex differences 

observed in the current study attenuate as the pubertal stages of females and males align.  

 

Our earlier work (Shen et al., 2021), and that of others (Schmaal et al., 2017), has 

demonstrated that global and regional alterations in cortical and white matter 

microstructural measures are associated with depression in adolescence. The results of the 

current study are somewhat aligned with these earlier findings such that we see differences 

in some temporal, parietal and frontal regions, as well as in fronto-occipital white matter 

tracts, with a consistent directionality of effects. However, these results were not consistent 

across females and males, and the depression-related imaging features were less widespread 

compared to existing findings, highlighting the need for further work on this topic. This 

discrepancy in results could be due to several factors including the significantly smaller 

sample of the present results as well as differences in the depression outcome measures and 

statistical analysis methods used. Nonetheless, we also report alterations in subcortical areas 

such as reduced volume of the nucleus accumbens (in both sexes), pallidum, and thalamus 

(males only). While hippocampal volume reductions is the most consistently reported 

depression-related subcortical region (Schmaal et al., 2016), research on typical subcortical 

development suggests a subtle decrease in the volume of the nucleus accumbens, pallidum, 

and thalamus across adolescence (Herting et al., 2018). Thus, depression-related subcortical 

features found in the present sample could reflect an accelerated neurodevelopment, which 

is thought to be related to early life stress and/or the emergence of depressive symptoms in 

adolescence (Callaghan & Tottenham, 2016; Ho & King, 2021). Indeed, this interpretation 

could also be extended to the associations demonstrated between earlier pubertal timing and 

brain structure.  
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4.9.3  Looking back to move forward: Expanding our conceptual model 

linking pubertal timing, neurodevelopment, and mental health 

outcomes 

While the focus of this registered report was to test the mediating role of brain structure in 

the association between early pubertal timing and increased depression risk, it is also 

important to consider the factors associated with accelerated pubertal development to begin 

with. The findings of our exploratory work, where earlier pubertal timing was found to 

mediate the association between parental depression and youth depression, underscore the 

need for further work in this area. In fact, recent work by Colich and McLaughlin (2022) 

proposes that earlier pubertal development may be a mechanism that relates early-life 

adversity with the emergence of internalising difficulties in adolescence (Colich & McLaughlin, 

2022). Thus, the conceptual framework of the current study should be expanded in future 

work to consider socio-environmental factors (e.g., early life adversity) that predict earlier 

pubertal timing. Given that knowledge gaps still exist in our understanding of normative brain 

development during adolescence (particularly in terms of brain function), global 

neuroimaging metrics, such as “BrainAGE” may better capture deviations (e.g., acceleration) 

from typical neuromaturation, and on what scale this occurs (globally, or in particular brain 

networks) (Colich & McLaughlin, 2022; Popescu et al., 2021). Emerging research has already 

begun to explore such questions by examining brain maturation and puberty in early 

adolescence using deep learning brain age prediction models (Holm et al., preprint). Further, 

applying such methods in large longitudinal datasets like ABCD, will help the field better 

distinguish how early life experiences relate to pubertal timing, how this in turn shapes 

neurodevelopment, and the ways in which this may contribute to vulnerability to mental 

health difficulties during adolescence.  

 

4.9.4 Limitations and future directions  

The current study is not without limitations. Firstly, the puberty and depression measures 

used were both parent-report. We prioritised parent-report of youth pubertal development 

(over youth self-report) because youth have been found to over-report their pubertal 

development in the early stages of adolescence (Schlossberger et al., 1992). Further, there 
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was a large number of “I don’t know” responses in the early waves of ABCD puberty data 

collection (Cheng et al., 2021). However, adolescent report may better capture the more 

intimate body changes associated with puberty, especially in the later pubertal stages (Dorn 

et al., 1990). Importantly, self- (and parent-) report measures of pubertal development assess 

the outcome of prolonged systemic hormonal effects and thus are limited in their ability to 

make inferences about the biological mechanisms relating pubertal timing to 

neurodevelopment (Goddings et al., 2019). Compared to physician assessments of pubertal 

development and picture-based measures like the Tanner Stages (Marshall & Tanner, 1969, 

1970), there are number of measurement error considerations related to the PDS. For 

example, PDS responses mix rate of change and stage, such that someone experiencing rapid 

pubertal changes (i.e., tempo) might be more likely to select the response “definitely 

underway” compared to someone with a more protracted pubertal development. Similarly, 

the yearly interval between assessments in ABCD may mean that aspects of pubertal 

development may be described as “complete” even though further changes could occur later. 

As longitudinal data become available in ABCD, such considerations warrant attention so that 

we can map and interpret patterns of pubertal maturation as accurately as possible, while 

acknowledging the limitations of the measures available.  

 

Akin to the limitations associated with parent-report of pubertal development, examining 

adolescents’ self-report of depressive symptoms, and how this relates to parent report, is an 

important consideration for future work. Discrepancy between child and parent reports of 

psychopathology has been well documented (Achenbach, 2006; De Los Reyes, 2011) and 

suggests that parents may under-report youth depressive symptoms compared to youth self-

report (Eg et al., 2018). Socio-environmental factors, such as family conflict and social 

cohesion have been found to be associated with greater and less reporter discordance, 

respectively (Kelly et al., 2016). Given the substantive body of research relating early life stress 

to both early pubertal timing and youth psychopathology (Colich & McLaughlin, 2022), multi-

informant approaches should be incorporated into future analysis designs where possible.  

 

Although the temporal distance between pubertal timing, brain structure, and youth 

depression measures was a strength of the analyses undertaken in the current study, due to 
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the varying availability of follow-up data, we did not examine any changes in our variables of 

interest between timepoints. Moreover, a brain structure previously found to mediate the 

association between earlier pubertal timing and depression in adolescence, namely, the 

pituitary gland (Whittle et al., 2012), was not available in the brain parcellations provided in 

the ABCD curated data release and was thus not tested as a potential mediator. We 

recommend using the raw ABCD imaging data to test the pituitary gland specifically as a 

mediator in further research. Further, subsequent work should also reflect the temporality 

inherent to development by examining domains such as pubertal tempo (the rate at which 

pubertal development occurs), and how this relates to both brain structural and functional 

changes across adolescence, as well as depressive symptom trajectories. Charting individual 

differences in development has gained increasing attention in recent times but longitudinal 

studies with multiple timepoints are necessary to generate developmental pathways 

(Bethlehem et al., 2022; Mills et al., 2021). For example, do differences in pubertal timing 

represent a stable risk factor that predicts the emergence of depression or do other factors 

(e.g., early life stress, loneliness) exert varying degrees of influence during adolescence.  

 

4.9.5 Conclusion 

The current study makes a significant contribution to our understanding of how pubertal 

development relates to psychopathology by directly testing an outstanding question in the 

field, as identified in a recent review paper Pfeifer & Allen (2021). That is, we examined a 

specific feature of brain development, brain structure, and tested whether it mediated the 

association between pubertal timing and depressive symptoms. However, central to the new 

conceptual model proposed by Pfeifer & Allen (2021) is the consideration of neural, social, 

and pubertal processes simultaneously and how they co-evolve and interact over time. Thus, 

the design of future studies should try to reflect this complex interplay of factors as much as 

possible. Longitudinal cohort studies like ABCD will be key to answering such research 

questions due to the large sample size and multi-modal nature of the measures collected. 

Further, ABCD could be used to replicate and extend the important multiverse findings from 

studies with smaller samples (e.g., Barendse & Byrne, 2021). Importantly, adopting a “team 

science” approach will be crucial to the success of this effort so that we can advance our 

understanding of the aspects of pubertal development that drive mental health 
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vulnerabilities during adolescence in a reproducible and collaborative manner (Zanolie et al., 

2022).  

 

4.10 Data access 

N.M and X.S have had access to the ABCD annual curated data release 2.0.1 through their 

project entitled, “Brain structural associations with depression in a large early adolescent 

sample (the ABCD Study) (Shen et al., 2021). N.M and X.S also have access to the curated data 

releases 3.0 and 4.0. X.S looked at the baseline depression measures outlined in the current 

project. N.M has accessed the baseline puberty, depression, imaging, and socio-

environmental variables outlined in the current project for the purposes of data quality 

control and pre-processing. N.M looked at year 1, year 2 and year 3 follow up data to 

determine sample sizes for the main analyses. Prior to the main analyses, the only statistical 

models run by N.M were those outlined in the pilot analyses. All scripts (R and Mplus) used in 

this registered report are available on the GitHub repository for this project: 

https://github.com/niamhmacsweeney/ABCD_puberty_depression . 

 

N.M and all co-authors self-certify that they did not observe any of the statistical models 

outlined in the confirmatory analysis until after the in-principle acceptance was issued.  
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5 Irritability in Adolescent Depression — A 

Narrative Literature Review  

 

5.1 Chapter introduction  

The work contained within this thesis has thus far focused on brain structural associations 

with depressive symptoms in adolescence, and how other biological factors, such as early 

pubertal timing relate to depression risk. However, as previously discussed, an individual’s 

vulnerability to depression arises, and unfolds, within a complex interplay of biological, 

psychological, and social processes. In addition to brain structural alterations, research has 

shown that differences in brain function are implicated in depression. In this chapter, I focus 

on a specific aspect of behaviour, irritability, which is an additional cardinal symptom of 

adolescent depression. High levels of irritable mood in childhood/adolescence predict later 

depression in adolescence and young adulthood. It has therefore been suggested that 

irritability could be an early indication of emotion regulation difficulties and thus, a promising 

intervention target. However, the neural underpinnings of irritability in adolescent 

depression remain underexplored and existing research methods typically overlook the social 

context in which irritability occurs during adolescence.  

 

While many advantages accompany population-based cohort studies like ABCD (e.g., large 

sample size/increased statistical power), the breadth of measures available can come at the 

cost of phenotypic depth. Additionally, the measures available within a pre-existing dataset 

may not be suited to answering your research question of interest. For example, the measures 

available within ABCD did not allow me to address the limitations within the extant literature 

on the neural basis of irritability in adolescent depression. This highlights the continued value 

of small-scale studies, whereby researchers can curate a study that serves their specific 

research question, and importantly, employ methodologies that may not be as feasible within 

large-scale studies, such as co-production.  
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Thus, as a prelude to Chapters 6 & 7, this chapter contains a narrative review that brings 

together current research on irritability in adolescent depression and the associated 

neurobiology, and highlights directions for further research. Specifically, I draw attention to 

how existing studies on the neural basis of irritability typically use paradigms that overlook 

the social context in which irritability occurs. Given that adolescence is a time during which 

behaviour is significantly impacted by one’s surroundings, I propose an innovative research 

design centred on co-produced research with young people. I argue that this creative 

approach will ensure that our research questions and methodologies accurately reflect the 

lives of young people, which will improve construct and ecological validity within the field. 

Given the significant mental health challenges faced by young people today, we urgently need 

to develop novel approaches to better understand adolescent depression and identify 

tractable targets for intervention.  

 

The article contained within this chapter has been submitted for publication and is available 

as a pre-print on PsyArXiv. In line with the views expressed in our paper, we are delighted to 

have two youth researchers (P.L and S.Z) as co-authors on this manuscript who were central 

to the development of this project. Author contributions are included within the manuscript.  

  

https://psyarxiv.com/4tn8s/
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5.2 Abstract 

Irritability is a core symptom of adolescent depression, characterised by an increased 

proneness to anger or frustration. Irritability in youth is associated with future mental health 

problems and impaired social functioning, suggesting that it may be an early indicator of 

emotion regulation difficulties. Adolescence is a period during which behaviour is significantly 

impacted by one’s environment. However, existing research on the neural basis of irritability 

typically use experimental paradigms that overlook the social context in which irritability 

occurs. Here, we bring together current findings on irritability in adolescent depression and 

the associated neurobiology and highlight directions for future research. Specifically, we 

emphasise the importance of co-produced research with young people as a means to improve 

the ecological validity of research within the field. Ensuring that our research design and 

methodology accurately reflect to lives of young people today lays a strong foundation upon 

which to better understand adolescent depression and identify tractable targets for 

intervention.  
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5.3 Literature review 

Adolescence, a life phase spanning the ages 10-24 years, is a time of increased risk for the 

emergence of depressive disorders, which have a peak onset age of 19.5 years (Sawyer et al., 

2018; Solmi et al., 2021). Importantly, rates of adolescent depression are rising. In the US, 

rates increased from 8.1% in 2009 to 15.8% in 2019 (Daly, 2022). Compared to adult-onset 

depression, adolescent-onset depression is associated with a more recurrent illness course 

and a host of physical and psycho-social difficulties with longer term consequences (Malhi & 

Mann, 2018; Thapar et al., 2012). It is therefore unsurprising that it is a leading cause of illness 

and disability for this age group (James et al., 2018). Taken together, these findings suggest 

that there are increasing unmet needs of adolescents with mental health difficulties (Wilson 

& Dumornay, 2022). 

 

Unlike major depressive disorder (MDD) in adults, where low mood and anhedonia are 

primary diagnostic symptoms, irritability is considered an additional cardinal symptom 

specific to MDD in adolescence (American Psychiatric Association, 2013b). Irritability can be 

defined as low frustration tolerance and an overreaction to blocked goal attainment relative 

to same-age peers (Avenevoli et al., 2015; Stringaris et al., 2013). While this can represent a 

normative behaviour in adolescence, it becomes a pathological feature when associated with 

persistent functional impairment. Several behavioural studies demonstrate that high 

irritability in childhood and youth predicts later depression, suicidality, and impaired social 

functioning in adulthood (Leibenluft & Stoddard, 2013; Stringaris et al., 2013).This suggests 

that irritability may be an early indicator of emotion regulation difficulties and an actionable 

target for the prevention of downstream mental illness. 

 

Existing definitions of irritability (i.e., proneness to anger/frustration) have shaped the 

primary experimental paradigms used in neuroimaging research on irritability, typically using 

frustrative non-reward and threat response tasks. Although these methodological 

approaches likely induce an irritated mood, the question remains as to whether they 

sufficiently tap into the broader social context in which the irritable mood occurs. This 

question is particularly pertinent when studying irritability in adolescence, a period during 

which mood and behaviour are heavily impacted by one’s social environment (Blakemore & 
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Mills, 2014; Sawyer et al., 2018). Here, we therefore seek to draw together current findings 

on adolescent irritability and its underlying neurobiology, not as a formal literature review 

(available elsewhere, e.g., Lee et al., 2022) but as a means to discuss opportunities for future 

directions in this field. Specifically, we highlight the value of co-produced research with young 

people as a way to ensure that our research design and methodology accurately reflects the 

lives of adolescents (MacSweeney et al., 2019; Whitmore & Mills, 2021). Improving the 

ecological validity of our research will help maximise the chances of identifying tractable 

targets for intervention that are appropriate for today’s youth. 

 

5.3.1 Defining irritability in the context of depression 

According to current psychiatric nosology, irritability can be categorised as being chronic or 

episodic (Leibenluft et al., 2006). Chronic irritability in adolescence represents a young 

person’s baseline mood. Chronic irritability is considered a defining feature of disruptive 

mood dysregulation disorder (DMDD), whereby clinically significant irritability must have 

been present for at least 12 months (American Psychiatric Association, 2013b). Conversely, 

episodic irritability, which refers to changes from baseline mood, is more often seen in mood 

disorders such as depression and bipolar disorder (American Psychiatric Association, 2013b). 

The Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) further 

distinguishes irritability into phasic and tonic. The former referring to behavioural outbursts 

of extreme anger from a high baseline, while the latter relates to angry mood lasting several 

days, months or weeks. Although typically described in chronic irritability, they may also be 

present within episodic irritability for the duration of the irritable mood (Vidal-Ribas & 

Stringaris, 2021). In terms of links between irritability and depression (see Vidal-Ribas & 

Stringaris, 2021 for further detail), the model with the most support is that of “shared risk 

factors”. That is, shared risk factors including genetic risk, family history of depression, 

temperament characteristics, and negative parenting styles, influence both outcomes (Vidal-

Ribas & Stringaris, 2021).  
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5.3.2 The neurobiology of irritability  

While theoretical models of irritability can help contextualise factors associated with the 

emergence and development of irritability, identifying tractable targets for intervention 

requires an understanding of the neural mechanisms underpinning this salient and 

transdiagnostic marker of mental illness. The growing emphasis on adopting a translational 

neuroscience perspective is reflected in the significant increase in the number of studies 

published on the neural basis of irritability over the past decade (Lee et al., 2022; Nielsen et 

al., 2021). These studies have largely focused on exploring how irritability in childhood and 

adolescence, typically in clinical samples (e.g., youth with DMDD, attention deficit 

hyperactivity disorder (ADHD), internalising difficulties), relates to changes in blood-oxygen-

level-dependent (BOLD) signal, measured via functional magnetic resonance imaging (fMRI).  

 

5.3.3 Task fMRI studies  

Task-based fMRI studies make up much of this relatively nascent field of research, which 

pivots upon three neurocognitive domains: threat processing/emotional reactivity, reward 

processing, and cognitive control, the latter of which is a much smaller body of work. Threat 

processing and reward processing constitute the two brain/behaviour pathways proposed by 

Brotman et al. (2017) in their translational neuroscience model of irritability (Brotman et al., 

2017). Evidence for the threat processing pathway emerges from research which suggests 

that increased irritability is associated with an aberrant neural response in the amygdala, 

thalamus and insula, when youth are presented with emotionally threatening stimuli (e.g., 

angry or fearful faces) (Kryza-Lacombe et al., 2020; Tseng et al., 2016; Wiggins et al., 2016). 

Moreover, higher levels of irritability were found to be associated with more pronounced 

fluctuations in neural activation across task conditions (e.g., from congruent to incongruent 

trials), which may represent the additional effort required by youth with high irritability levels 

to process and respond to emotional stimuli in their environment.  

 

Research supporting the reward processing pathway of irritability centres on frustrative non-

reward tasks, whereby a frustrated psychological state is induced when the participant fails 

to receive a reward they have been conditioned to expect. Thus, the neural mechanisms of 

irritability are examined by inducing a frustrated state in real time and studying the associated 
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neural correlates. Using this rigged reward paradigm, research has shown that youth with 

high irritability exhibit aberrant neural responses in fronto-striatal regions, such as the 

prefrontal cortex (PFC), cingulate gyri, and caudate, compared to typically developing youth 

(Deveney et al., 2013; Perlman et al., 2015; Tseng et al., 2019). Further, a recent study by 

Scheinost and colleagues used connectome-based predictive modelling and found that during 

frustration trials, functional connectivity within motor-sensory, subcortical and salience 

networks, and between these networks and fronto-parietal networks, was associated with 

increased levels of irritability (Scheinost et al., 2021). The handful of studies that have 

examined the neural basis of irritability via cognitive control fMRI tasks, such as inhibitory 

control paradigms (e.g., stop signal task, Flanker task), suggest that youth with high levels of 

irritability exhibit inhibitory control deficits, which are reflected in aberrant patterns of neural 

activation in superior frontal gyri, temporal gyri, and the anterior cingulate cortex (Chaarani 

et al., 2020; Liuzzi et al., 2020).  

 

Taken together, current paradigms used to examine irritability may be more likely to elicit 

fear or stress responses than more genuinely irritable ones, which highlights the need for 

tasks that aim to induce irritable mood specifically. Improving the construct validity of existing 

paradigms will have downstream effects on the ecological validity of the field by ensuring that 

our research methods capture the experience of youth irritability in the present day as 

accurately as possible.  

 

5.3.4 Resting state fMRI studies 

There are a limited number of resting state studies that have examined the neural correlates 

of irritability. In these studies, a questionnaire-based measure of irritability (e.g., the Affective 

Reactivity Index (ARI); Stringaris et al., 2012) is collected outside the scanner and then these 

behavioural measures are related to resting state imaging features. Most of the existing 

resting state studies focus on chronic irritability within the context of aggressive 

behaviour/temper outbursts in childhood-onset disorders such as ADHD, oppositional defiant 

disorder (ODD), and autism spectrum disorder (ASD) (Bennett et al., 2017; Gaffrey et al., 2021; 

Roy et al., 2018; Weathersby et al., 2019), as well as some examining irritability in DMDD and 

bipolar disorder (Stoddard et al., 2015). Similar to the task-fMRI irritability literature, these 
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studies suggest that the neural correlates of irritability comprise a diverse set of functional 

networks such as the default mode network (DMN), fronto-parietal network (FPN), executive 

control, sensory-motor, and visual networks (Nielsen et al., 2021). These networks support 

and coordinate cognitive processes associated with irritable mood, including self-referential 

behaviour (DMN), reward processing and emotion regulation (FPN, executive control 

network), and motor response (sensory motor network).  

 

5.3.5 Next steps for fMRI-irritability research  

A recent systematic review and meta-analysis by Lee et al. (2022) sought to determine 

whether there are convergent neural responses associated with irritability across the domains 

of threat, reward processing, and cognitive control (using task-fMRI studies only) (Lee et al., 

2022). Interestingly, they found no evidence for convergence across these neurocognitive 

domains and posit that this may be due to the marked heterogeneity in clinical characteristics, 

task design, irritability measures, analysis methods, small sample sizes, and a lack of 

longitudinal research. These limitations also extend to the resting state irritability research 

(Nielsen et al., 2021). Taking these findings together, it remains unclear whether brain 

mechanisms underpinning irritability vary across disorders (Eshel & Leibenluft, 2020). Some 

evidence suggests that individual differences in dispositional (i.e., chronic) irritability may be 

more underpinned by amygdala-DMN connectivity than state (i.e., episodic) irritability, due 

to more consistent findings in this neural circuity in resting state (Fulwiler et al., 2012; Gaffrey 

et al., 2021) compared to task-based studies (Kryza-Lacombe et al., 2020; Stoddard et al., 

2017). However, more research, ideally combining resting state and task-based paradigms in 

larger samples with harmonised protocols is needed. 

 

The heterogeneity present across multiple domains (e.g., in samples and methodologies) 

sheds light on several important considerations, especially research involving developmental 

samples. Probing individual differences in irritability will allow us to better understand its 

bounds as a normative behaviour across development, and what might reflect concerning 

irritable mood. How this relates to other cognitive processes, such as emotion regulation, and 

the associated underlying neural circuitry, will pave the way forward for targeted intervention 

strategies. Further, there is an overall paucity of research on age-related (and sex-related) 
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changes associated with irritability — longitudinal and sufficiently powered cross-sectional 

studies that examine age interaction effects are also needed. It may be that the neural 

underpinnings of irritability vary across development and are related to other typical, as well 

as divergent, neurodevelopmental changes. Emerging research on brain growth charts for the 

human lifespan will be helpful in this effort (Bethlehem et al., 2022). Moreover, few studies 

have examined irritability in later adolescence (only 4/30 studies in the Lee et al. review had 

a mean age >15 years). Given the varying age of onset for mental health difficulties during 

adolescence (Solmi et al., 2021) and the distinct neuromaturation that characterises this life 

phase (Bethlehem et al., 2022), future studies should be designed in a developmentally 

sensitive way. Some large, longitudinal youth cohort studies such as IMAGEN and ABCD, 

include variables related to irritable mood alongside neuroimaging data, and have already 

contributed to our understanding of the neurobiology of youth irritability and 

psychopathology (e.g., Chaarani et al., 2020, using IMAGEN data).  

 

While the large sample sizes of such cohort studies are well powered to detect more subtle 

effects (e.g., individual differences in irritability, underlying neural circuitry, and potential 

contributing factors), the breadth of measures included in such studies comes at the cost of 

phenotypic depth. For example, ABCD and IMAGEN do not include an irritability-specific 

questionnaire like the ARI. Instead, a measure of irritability is derived from individual items in 

broad mental health measures (e.g., DAWBA, CBCL, K-SADS). Thus, rather than a “panacea” 

to the many unknowns in developmental cognitive neuroscience, cohort studies may be 

better conceptualised as hypothesis generating tools that can inform directions for future 

studies (Saragosa-Harris et al., 2022). To develop a finer-grained characterisation of 

irritability, and the functional significance of altered neural circuitry — especially how it 

relates to psychopathology — we need construct-specific and ecologically valid experimental 

designs. Ideally, these designs would involve harmonised protocols across studies to minimise 

sources of error as much as possible. Initiatives like the ENIGMA Irritability Working Group 

are leading by example in this way.  

 

In sum, the surge of studies on the neurobiology of irritability over the past decade has 

allowed us to outline the brain networks involved in this transdiagnostic symptom from which 

http://enigma.ini.usc.edu/ongoing/enigma-irritability/
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myriad directions for future research have emerged. Before embarking upon these new 

avenues of research, we should reflect on how we plan to move forward to ensure that our 

journey takes us towards the world of young people rather than away from it. 

 

5.3.6 The value of co-produced research  

Co-produced research, whereby the target population of the study (e.g., adolescents) are 

involved in as many steps of the research project as possible, has gained increasing traction 

in recent times (https://www.ukri.org/about-us/policies-standards-and-data/good-research-

resource-hub/research-co-production/). Initiatives like Young Persons’ Advisory Groups 

(YPAGs) allow young people to be involved in research in an active, meaningful, and mutually 

beneficial way. As co-researchers, young people and researchers can work together to ensure 

that the research questions, methods, and dissemination of research findings are relevant to 

the lives of young people today (MacSweeney et al., 2019). Although co-produced research 

involves a considerable (and front-loaded) time investment, researchers should approach it 

like other best practices in research, such as open science (Whitmore & Mills, 2021). 

Transparent and rigorous research that is attuned to the issues and experiences of today’s 

young people will be key tools in our effort to answer complex questions in developmental 

science (e.g., why is adolescence a period of significant vulnerability to the onset of mental 

health difficulties?). Thankfully, resources are now available to help researchers undertake 

effective and meaningful co-created research (Whitmore & Mills, 2021).  

  

5.3.7 Towards a more ecologically valid study of irritability  

Although there have been important commentaries on the neuroscience of irritability (Eshel 

& Leibenluft, 2020), the social context in which irritable mood occurs has been largely 

overlooked. Irritability occurs in social and interactive contexts between young people. 

However, existing fMRI paradigms like frustrative non-reward tasks and emotional faces 

tasks, may not appropriately capture the rich social tapestry of adolescence. To enhance both 

construct and ecological validity, future research on irritability should incorporate social 

context into the study design. For example, Lee et al., (2022) propose a frustrative social non-

reward task that targets behaviours like social rejection. This work would complement 

https://www.ukri.org/about-us/policies-standards-and-data/good-research-resource-hub/research-co-production/
https://www.ukri.org/about-us/policies-standards-and-data/good-research-resource-hub/research-co-production/
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existing research on social exclusion in adolescence, which has used socially relevant tasks 

like Cyberball (Sebastian et al., 2010; Williams et al., 2000). Given that avoidance of social 

rejection drives adolescent decision-making and behaviour (Tomova et al., 2021), this 

research could provide novel insight into how the nuances of the adolescent social world 

relate to the emergence and development of irritability and related mental health difficulties. 

Importantly, this effort to align our research methods with the social world of adolescence 

could be strengthened even further by undertaking research that is co-produced with young 

people.  

 

By asking young people questions like, “What situations do you find irritating in your daily 

life?”, we could design studies that better reflect the experience of irritability as a young 

person. In turn, this could help disentangle the current heterogenous findings in irritability 

research. As mentioned by Lee et al. (2022), these insights could be incorporated into task-

based fMRI, but there is also opportunity for “hybrid” resting-state paradigms. Recent calls 

for a “third-wave” of fMRI research propose the use of integrated fMRI paradigms, whereby 

task-like manipulations are paired with “traditional” resting state approaches (Finn, 2021). 

Naturalistic stimuli (e.g., movie watching) are some examples of integrated fMRI paradigms 

(Sonkusare et al., 2019), which allow researchers to regain some degree of experimental 

control, while acknowledging the dynamic patterns of brain function that arise from self-

generated activity. Further, pairing these integrated paradigms with analyses capable of 

capturing fine grained temporal details, such as dynamic functional connectivity analysis, 

warrants consideration going forward. It has been argued that progress in our understanding 

of the human brain and behaviour is likely to emerge from these “third-wave” paradigms 

(Finn, 2021). However, this progress will be hampered if the paradigms are not ecologically 

valid. Co-produced fMRI paradigms will ensure that the construct of interest is studied in a 

way that reflects real-world experience. For example, when studying youth irritability, we 

could ask young people to come up with irritating scenarios based on their own experiences. 

These scenarios would then form the stimuli for an integrated fMRI paradigm, asking young 

people to read each irritating scenario and imagine the experience as vividly as possible while 

in the scanner. This protocol would be suited to a range of samples (e.g., healthy volunteers, 
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young people with mental health difficulties) but could also be adapted to suit different 

sample characteristics and research questions.  

 

Importantly, novel paradigms like this would need to be validated against traditional task-

based irritability paradigms (e.g., frustrative non-reward and threat response tasks) as well as 

behavioural measures of irritability (e.g., ARI). Given the lack of convergence in the neural 

correlates of irritability across neurocognitive domains (Lee et al., 2022), a novel, co-produced 

integrated fMRI task with improved ecological validity, holds great promise as way to better 

our understanding of youth irritability, identify tractable intervention targets, and move 

young people away from illness towards wellbeing.  
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5.5 Chapter conclusion 

The literature reviewed and sentiments expressed in Chapter 5 directly inform the work in 

Chapters 6 & 7 of this thesis. In Chapter 6, I give an overview of the methods employed in our 

pilot study that adopted a co-produced youth-researcher design to develop a novel integrated 

fMRI paradigm that reflected the social nature of adolescence. Although our novel paradigm 

can be described as a “hybrid/integrated” paradigm because it comprises a “standard” resting 

state scan with a task-like manipulation, it is referred to as the “irritability task” hereafter in 

this thesis. I report the findings from this co-produced pilot study in Chapter 7.  
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6 Irritability in Adolescent Depression — Pilot 

Study Methods 

6.1 Chapter introduction  

This chapter introduces the data and methods used for Chapter 7 of this thesis. Firstly, I 

outline the source of the data. I then describe the various data types used including the fMRI 

task development, depression, and irritability measures. I also outline the scanning protocol, 

quality control, and pre-processing methods implemented. Finally, I give an overview of the 

statistical methods used to analyse this data, namely, Leading Eigenvector Dynamics Analysis 

(LEiDA; Cabral et al., 2017).  

 

Many thanks to Liana Romaniuk, Laura Klinkhamer, and Hannah Casey for assisting with the 

quality assessment of the fMRI data.  

 

Supplementary information for this chapter can be found in Appendix 3.  

 

6.2 Data source 

The data used for this chapter came from a pilot study entitled, Development of novel 

neuroimaging markers for the detection of adolescent depression. I led the recruitment and 

data collection for this study between November 2020 and May 2021, which was supported 

by Kimberley Atkinson through the NRS Mental Health Network. Data collection took place at 

the Clinical Research Imaging Centre (CRIC), University of Edinburgh. I also led the 

development of the co-produced irritability task in Summer 2020, which is described in 

Section 6.5.1 and in the Supplementary Information for this chapter. 

 

6.2.1 Recruitment 

Participants were recruited through schools and universities, third sector organisations (e.g., 

charities and youth groups), social media and via snowball sampling in the greater Edinburgh 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EaLBSAYsO_9GgnlencPGVDUBgOn1XAFiS3cdLcQQsnOC4Q?e=UfFwdg
https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=I0FpHz
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area. Identified organisations were contacted by the study team and asked if they would 

distribute information about the study to 16–20-year-olds in the organisation. If an 

organisation agreed to participate, standard recruitment materials were provided and 

circulated by the organisation via mailing lists, social media, posters, and word of mouth. 

Interested individuals contacted the study team directly and were given a study information 

sheet. They then completed a brief online screening questionnaire, and if eligible, their study 

appointment was scheduled. All participants provided informed consent before taking part in 

the study. Participants were also given a picture of their brain for taking part in the study and 

travel costs were covered to increase the accessibility of the study. Recruitment materials can 

be found in the Supplementary Information.  

 

6.2.2 Participants  

In total, 30 participants aged 16-20 years (Mage = 18.86 years; SD = 0.83; 77.4% female) with 

self-reported depression took part in this study. Eligible participants were aged 16-20 years, 

free from MRI contraindications (e.g., dental braces, pacemakers), fluent English speakers, 

did not report a past or current clinical diagnosis of autism spectrum disorder, a neurological 

or genetic disorder, or known intellectual disability, and had a Mood and Feelings 

Questionnaire (MFQ; short version) total score ≥ 8. A total MFQ score ≥ 12 indicates the 

presence of depression in the respondent (Burleson Daviss et al., 2006; Costello & Angold, 

1988). As our aim was to recruit a sample with a range of depressive symptoms, we selected 

a lower MFQ cut-off score ≥8 (range = 8 to 23, mean = 16.52, SD = 4.20) to ensure the presence 

of mild and moderate symptoms in our sample. The MFQ was used for screening purposes 

only — the main depression outcome measure (PHQ-9) for this study is described later in this 

chapter.  

 

There was a data transfer error for one participant’s imaging data, which excluded their data 

from further analysis and resulted in a final sample of N = 29.  

 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EaLBSAYsO_9GgnlencPGVDUBgOn1XAFiS3cdLcQQsnOC4Q?e=UfFwdg
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6.3 Funding and ethics  

This study was funded by a Wellcome Trust Institutional Strategic Support Fund grant (PI: H 

Whalley). The study protocol was approved by the Edinburgh Medical School Research Ethics 

Committee (Reference: 19-HV-061) in November 2020. Our ethics approval letter can be 

found in the Supplementary Information.  

 

6.4 Study procedure 

The study appointment lasted approximately 2.5 hours and comprised a 50-minute MRI scan, 

which was followed by a battery of questionaries (hosted on Online Surveys). Participants 

were offered a break after the scan and given water and a light snack.  

 

6.4.1 Scanning protocol  

A 3T Siemens (model: Magnetom Skyra Fit) MRI scanner with a 32-channel head coil was used 

for data acquisition at the CRIC, University of Edinburgh. Inflatable pads were used to 

immobilise the participant’s head. The scanning procedure consisted of a T1-weighted 

sequence that yielded 192 contiguous 1.0mm slices (matrix = 256 x 256; FoV = 256mm; flip 

angle = 7°). This was followed by a functional imaging protocol using an axial gradient 

echoplanar imaging pulse sequence (EPI) [TR = 1400ms; TE = 30ms; matrix = 70 x 70; FoV = 

210mm; flip angle = 68°, spatial resolution = 3mm isotropic). Sixty contiguous 3mm slices were 

collected during each TR using 2x GRAPPA acceleration. The functional imaging protocol 

consisted of two resting state scans, each lasting 6 minutes. The first scan was a standard 

resting state scan whereby the participant was asked to focus on a white cross on a dark 

screen. The second resting state scan was our novel irritability task whereby participants were 

asked to read a series of 18 irritating scenarios presented on the screen one at a time and to 

imagine being in each scenario as vividly as possible. Each scenario was presented for a period 

of 20 seconds. The development of this task is outlined in Section 6.5.1.Tasks were presented 

using a screen in the bore of the magnet and run using Presentation® software. After the 

resting state scans, participants completed a reward task and a self-referential recall task, but 

these data are not included in this thesis.  

 

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EaLBSAYsO_9GgnlencPGVDUBgOn1XAFiS3cdLcQQsnOC4Q?e=UfFwdg
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6.5 Study materials 

6.5.1 Irritability task  

As discussed in Chapter 5, existing research on the neural basis of irritability use experimental 

paradigms that often overlook the social context in which irritability occurs. Therefore, we 

aimed to improve the ecological validity of youth irritability neuroimaging research by 

developing a novel fMRI task that better reflected the experience of irritability as a young 

person today. To achieve this aim, we adopted a co-produced youth-researcher design 

whereby young people were involved in multiple stages of the task development, as outlined 

below.  

 

In Stage 1 of the task development, a series of scenarios were generated by an independent 

group of youth (N = 25) at science communication and outreach events in the Edinburgh area. 

Specifically, young people were asked to complete the following sentence based on their own 

life experience and thoughts: “I find it irritating when….”. These scenarios were collected via 

a laptop/pen and paper. Young people were verbally asked by the research team whether 

they were aged 16-18 years before they completed the sentence prompt on scenarios that 

they found irritating. Some young people listed more than one scenario. We did not collect 

any identifying information from the young people, and we recorded all scenarios collected 

regardless of whether multiple scenarios were provided by the same young person.  

 

 In Stage 2 of the task development, the research team reviewed these scenarios, removed 

any duplicates, and corrected the scenarios for spelling and grammar. Given the prompt (i.e., 

“I find it irritating when…”) that we used in Stage 1, all the scenarios were similar in sentence 

length. However, on a few occasions, the verbatim phrasing provided by the young person 

could have been more succinct or an alternative sentence structure worked better. For 

example, “I find it irritating when I do housework” was changed to “I find housework 

irritating”. We thus made minor edits so that the sentence length was as consistent and 

coherent as possible across the scenarios. We also provided some additional contextual detail 

in some scenarios so that they were easier to understand/imagine.  
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This resulted in a final sample of 51 irritating scenarios which were compiled into an online 

survey and rated by an independent group of young people (N = 61, aged 16-18 years). The 

mean irritability rating for each of these scenarios can be found in Table S1 in the 

Supplementary Information for this chapter.  

 

In the final stage of task development, we asked an independent group of young people (N = 

61; aged 16-18, also separate from study sample), to rate these scenarios on a 5-point scale 

where 1 = “not at all irritating” and 5 = “very irritating”. Scenarios were compiled into an 

online survey and distributed to young people via social media and local youth groups. We 

worked with a youth researcher (Simal Zafar) as part of a Nuffield Summer Research 

Placement, who led the initial distribution of this survey. The survey remained live for a period 

of 5 weeks between August and September 2020. The 18 most-highly rated scenarios were 

chosen as stimuli for the irritability task (see Table 6.1). The task was programmed in NBS 

Presentation (version 19) by Liana Romaniuk.   
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No. Scenario Rating 

 (out of 5) 

1 You're having a conversation with someone, and are 

trying to offer helpful advice, but they rudely keep 

talking over you and don't listen to what you're saying. 

4.53 

2 You're talking with your parents, and it’s obvious that 

they're not taking you seriously and are just patronising 

you. 

4.23 

3 You're doing something fun online, and the WiFi keeps 

disconnecting. 

3.67 

4 You're trying to get somewhere important, but you're 

stuck behind someone walking slowly. 

3.36 

5 You and your friends are having a private conversation. 

Your parents listen in but only hear part of it, and then 

get angry with you because they didn't hear and 

understand the whole thing. 

3.89 

6 You're in your room busy looking at your phone, and 

then someone just barges in and starts touching your 

things. 

3.59 

7 You're in one of your favourite shops, and you see 

someone being really rude to someone who works 

there, who is obviously doing their best. 

4.46 

8 Someone you thought you could trust tells you a blatant 

lie. 

4.33 

9 You've been planning to sort out your room today. Just 

when you're about to start, your parent tells you to sort 

your room out.  

4.28 

10 Your parent asks you to do the washing up for the third 

time, even though you've already said you'll do it. 

3.93 
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6.5.2 Depressive symptom measure 

Depressive symptom severity was measured using the depression module of the Patient 

Health Questionnaire (PHQ-9; Kroenke et al., 2001). The PHQ-9 is a self-administered 9-item 

questionnaire based on the Diagnostic and Statistical Manual (4th Edition; DSM-IV). It assesses 

the present degree of depression in individuals by asking them to rate each symptom criteria 

on a scale of “0” (not at all) to “3” (nearly every day). The PHQ-9 has been validated across a 

range of clinical settings and samples as a screener for Major Depressive Disorder (MDD) as 

well as being a measure of depressive symptom severity in both adults (Levis et al., 2019) and 

adolescents (Richardson et al., 2010).  

11 You're choosing the subjects you’d like to study, and 

your parent just tell you what you "should" be studying, 

without listening. 

3.56 

12 You're not in a good mood, but you're forced to go to a 

family event and make awkward conversation. 

3.11 

13 A teacher expects you to complete a certain task, but 

you don't know how to do it. 

3.98 

14 Everyone expects you to know what you want to do in 

life, even though you are still a teenager. 

3.66 

15 You've been preparing for a test that means a lot to 

you, but on the day, you get stressed out and it doesn't 

go as well as you'd hoped. 

4.06 

16 There's something you wanted to do today, but you just 

can't get motivated for some reason. 

3.77 

17 You're eating out somewhere nice, but one of your 

friend's friends is eating with their mouth open. 

 

3.68 

18 It's been a long day, but you're stuck waiting 

somewhere. It’s too hot, and now you feel hungry. 

3.12 

Table 6.1 — The 18 most highly rated scenarios that were used as stimuli in our irritability task.  

Note: Scenarios are listed in random order here, and this order was used in the task across all participants.  

Note: Scenarios are listed in random order here, and this order was used in the task across all participants. 
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6.5.3 Irritability measure 

Youth irritability was measured using the Affective Reactivity Index (ARI) self-report 

questionnaire (Stringaris, Goodman, et al., 2012). The ARI is a six-item scale that examines 

the frequency, duration, and threshold for irritable mood over the past six months. The ARI 

also contains a seventh, impairment-of-functioning item. Each item is rated on a 3-point Likert 

scale ranging from “0” (not true) to “3” (certainly true). Items include “easily annoyed by 

others”, “get angry frequently”, and “stay angry for a long time”. The ARI has demonstrated 

good internal consistency (Cronbach’s α values ≥.80) and construct validity in both clinical and 

community samples (Stringaris, Goodman, et al., 2012; Tseng et al., 2017). The ARI is the most 

commonly used dimensional measure of irritability and has been used to quantify youth 

irritability in a number of neuroimaging studies (Liuzzi et al., 2020; Scheinost et al., 2021; 

Stoddard et al., 2017; Tseng et al., 2019). Of note, the ARI is thought to assess trait-like 

irritability rather than state-like irritable mood, the former of which is regarded as less context 

dependent.  

 

6.6 Imaging data pre-processing 

6.6.1 Introduction to HALFpipe 

The Harmonised Analysis of Functional MRI pipeline (HALFpipe) version 1.2.1 was used for the 

pre-processing, quality assessment, and single-subject feature extraction of the imaging data 

used in Chapter 7 of this thesis. HALFpipe is a recent open-source and user-friendly tool 

developed by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) 

consortium (Waller et al., 2022). Given the reproducibility crisis in the field of neuroimaging 

(Gorgolewski et al., 2016; Poldrack et al., 2017) and many others (Baker, 2016), there has 

been increasing demand for the adoption of standardised pre-processing pipelines. Analysis 

pipelines are particularly key to fMRI research as myriad computational operations must be 

applied to fMRI data to generate interpretable results. Thus, there are many software tools 

available to carry out the necessary algorithmic processing and statistical modelling of fMRI 

data, such as SPM, AFNI, and FSL. Within these tools, there are many researcher “degrees of 

freedom” that can be applied at each step of the analysis pipeline, termed analytic flexibility 

(Poldrack et al., 2017). Although the rapid development of these computationally advanced 
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software tools has propelled the field of neuroimaging forwards, the abundance of choice and 

analytic flexibility has generated inconsistent findings, which can have significant effects on 

scientific conclusions (Botvinik-Nezer et al., 2020).  

 

In an effort to improve reproducibility within neuroimaging, a series of default parameters 

(e.g., spatial smoothing thresholds, Gaussian filtering) have been established based on 

empirically-derived best practices (Grüning et al., 2018). This has been employed in well-

established pipelines such as fMRIPrep, whereby a series of software tools are used together 

for different elements of the analysis workflow (Esteban et al., 2020). fMRIPrep has become 

the front runner in the field due to its adoption of open research best practices, namely, open-

source availability, pleasant user experience, as well as its “glassbox” principle of 

transparency, so that the user gains an understanding of what is going on at each step of the 

pipeline. However, fMRIPrep is mostly limited to the pre-processing of fMRI data and 

therefore analytic flexibility remains for parameter selection of postprocessing analyses, such 

as feature extraction and model specification.  

 

HALFpipe builds upon fMRIPrep by offering a standardised workflow from raw fMRI data 

through to feature extraction and group-level statistics. HALFpipe also includes additional 

features such as conversion of raw fMRI data to BIDS format, spatial smoothing, temporal 

filtering, advanced confound regression, and feature extraction. The HALFpipe workflow is 

shown in Figure 6.1. Like fMRIPrep, the HALFpipe software is containerised (e.g., Docker), 

which means that it comes packaged with all the software tools required for it to run, such as 

fMRIPrep, FSL, ANTs, FreeSurfer, and AFNI. This means that all users of a specific HALFpipe 

release will be using identical versions of the software tools housed within the container, 

which will aid reproducibility across different research and computing environments.  
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Figure 6.1 — HALFpipe Workflow. HALFpipe is configured in a user interface where the user is asked a series of 
questions about their data and the processing steps to perform. Data are then converted to BIDS format to allow 
standardised processing (white). After minimal preprocessing of the structural (blue) and functional (green and 
orange) data with fMRIPrep, additional preprocessing steps can be selected (pink). Using the preprocessed data, 
statistical maps can be calculated during feature extraction (turquoise). Finally, group statistics can be performed 
(yellow). Figure taken from Waller et al. 2022. The caption included here has been adapted slightly from the 
original paper.  

 

6.6.2 Pre-processing specifications 

Within HALFpipe, the main pre-processing of the imaging data was done with fMRIPrep. To 

note, six volumes were collected before the start of each scan to achieve T1 signal saturation, 

so it was not required to discard any additional volumes. First, the anatomical T1w images 

were skull-stripped via the antsBrainExtraction.sh function (from ANTs) using OASIS (Open 

Access Series of Imaging Studies) as a target template. The structural images were then 

normalised to standard space via the antsRegistration template (from ANTs), which HALFpipe 

defines as MNI152NLin2009cAsym (the most current and detailed template available) (Horn, 
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2016). HALFpipe then carries out additional pre-processing steps that denoises, filters and 

harmonises the functional data.  

 

Firstly, the functional data was denoised by Independent Component Analysis-based 

Automatic Removal of Motion Artefacts (ICA-AROMA), which employs an independent 

component analysis algorithm that classifies components as signal or noise, with high 

accuracy and robustness (Pruim et al., 2015). ICA-AROMA requires a reference template that 

is defined in standard space template MNI152NLin6Asym, which is different to that used by 

fMRIPrep. HALFpipe implements a different approach to fMRIPrep to deal with the two 

different standard space templates, by using a pre-existing warp between the two standard 

templates (Horn, 2016), rather than estimating a second normalisation to the other template. 

Compared to fMRIPrep, this halves the processing time and avoids the need to potentially 

manually check both spatial registrations. ICA-AROMA was then performed on the resulting 

fMRI images in MNI152NLin6Asym space using the ica_aroma_wf workflow from fMRIPrep. 

 

Next, grand mean scaling was applied where an image mean (the within-scan mean across all 

voxels and timepoints) is set to a predefined value of 10,000, which is calculated from the 

masked functional image. As the grand mean relates to scanner parameters such as amplifier 

power rather than neural mechanisms, grand mean scaling makes analysis results more 

interpretable and comparable across participants, sessions, and sites (Gavrilescu et al., 2002).  

 

The noise components that were previously estimated using ICA-AROMA were then removed 

from the smoothed and grand-mean-scaled data using FSL’s function fsl_regfilt. This method 

minimises removing shared variance between signal and noise components by calculating an 

ordinal least squares regression for each voxel, where signal and noise components are both 

included as regressors in the design matrix. As a result, the regression weights represent the 

unique variance of the noise components rather than the shared variance with the signal 

components. Next, a noise time series is calculated by multiplying the noise components by 

their regressor weights and adding them together. A denoised time series is then yielded by 

subtracting the noise time series from the voxel time series. Finally, a Gaussian-weighted 
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temporal filter set at 128s FWHM (HALFpipe’s default) was applied to remove low-frequency 

drift via FSL Feat.  

 

6.6.3 Quality assessment  

Although there have been many recent efforts to automate the quality assessment (QA) of 

fMRI data via machine learning methods (Esteban et al., 2017) or by predefined image quality 

thresholds (Alfaro-Almagro et al., 2018), these methods have not yet reached a stage where 

they can replace the eyes of trained researchers. Given the relatively modest sample size of 

our dataset, manually quality assessing the data was not a large undertaking. This process 

was greatly aided by the interactive web app provided by HALFpipe via a single HTML file. 

Within this web app, reports are provided for each participant based on several pre-

processing steps such as T1 skull stripping and normalisation, BOLD temporal signal-to-noise 

ratio (tSNR), motion confounds, ICA-based artefact removal, and spatial normalisation (see 

Figure 6.2). The images can be rated as “good”, “uncertain” or “bad” according to detailed 

explanations outlined in the ENIGMA HALFpipe quality assessment manual at 

https://github.com/HALFpipe/HALFpipe#quality-checks.  

 

Figure 6.2 shows an example of the quality control checks that were undertaken for each 

participant:  

 

A. T1w skull stripping: We see a bias-field corrected anatomical image with an 

overlay of the brain mask, indicated by the red line. We checked to see if any 

brain regions were missing from the mask and to make sure that parts of the 

skull were not included in the mask.  

 

B. T1w spatial normalisation: We see an anatomical image that has been 

resampled in standard space with an overlay of a brain atlas in standard space. 

We checked to see that the atlas regions closely matched the resampled 

image.  

 

https://github.com/HALFpipe/HALFpipe#quality-checks
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C. Echo planar imaging (EPI) tSNR: We see the temporal signal-to-noise ratio of 

the functional image post fMRIPrep pre-processing. We checked to determine 

whether the signal was distributed evenly across the brain, and whether there 

was any localised drop-out, motion striping artefacts, distortion, or 

asymmetry.  

 

D. EPI confounds: Here, we see a carpet plot produced by fMRIPrep. This is a two-

dimensional plot of the timeseries within a scan, with time shown on the x-

axis and voxels on the y-axis. Voxels are categorised into grey matter (blue), 

subcortical grey matter (orange), cerebellum (green), and white matter (WM) 

and cerebrospinal fluid (CSF) (red). Above the carpet plot, we are given time 

courses of magnitude of framewise displacement, global signal, CSF global 

signal, WM global signal, and DVARS (the temporal change in root-mean 

square intensity). We looked for abrupt changes in the intensity of the 

heatmap based on the motion and signal parameters mentioned above, which 

may represent motion spikes. We also checked for extended signal changes 

which could have indicated artefacts caused by scanner hardware defects.  

 

E. EPI ICA-based artefact removal: This report shows the time course of the 

average signal extracted from each ICA-component, which has been classified 

as either signal (green) or noise (red). A spatial map, timeseries and power 

spectrum has been created for each component. We checked that the 

components classified as noise did not correspond to known brain networks 

(e.g., DMN, salience network) or temporal patterns representing signal.  

 

F. EPI spatial normalisation: We are shown the functional image post fMRIPrep 

pre-processing overlaid with a brain atlas in standard space. We checked that 

the atlas regions closely matched the functional image.  

 

I undertook the initial QA and Laura Klinkhamer independently reviewed all the images. 

Further, a random sample of each rating band (good, uncertain, bad) were reviewed by Liana 
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Romaniuk and Hannah Casey. All reviewers had experience with structural and functional 

neuroimaging quality control. Given the overall good quality of the data (there were no bad 

ratings, and only a handful of participants were rated as “uncertain” on the EPI confounds 

checks), there was 100% consensus on the QA by all four raters. We used an average mean 

framewise displacement value of <.25mm as the motion cut-off for inclusion, which is a 

moderate to conservative threshold and in line with protocols employed by large scale 

neuroimaging studies (e.g., ABCD) (Hagler et al., 2019). Following QA, no participants were 

excluded from further analyses. QA statistics for participants are included in Tables S3 

(irritability condition) & S4 (rest condition) in the Supplementary Information.  

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EaLBSAYsO_9GgnlencPGVDUBgOn1XAFiS3cdLcQQsnOC4Q?e=UfFwdg
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Figure 6.2 — An example of the HALFpipe interactive web-based quality assessment (QA) tool for an individual participant. This participant has a rating of “good” across 
all quality control check categories. A: T1w skull stripping; B: T1 spatial normalisation; C: Echo planar imaging (EPI) temporal signal-to-noise ratio (tSNR); D: EPI confounds; 
E: EPI Independent component analysis (IPA)-based artefact removal; F: EPI spatial normalisation.

A B C

D E F
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6.6.4 Feature extraction 

Although HALFpipe can extract several features that are commonly used in both task and 

resting state fMRI analysis, our analysis focused on the atlas-based connectivity matrix 

feature as this was the required input for the LEiDA approach, described below. Of note, 

spatial smoothing is not applied in HALFpipe for this feature extraction. Spatial smoothing is 

not recommended for network analysis with fMRI data, as it has been shown to influence the 

identity of hubs in functional brain networks (Alakörkkö et al., 2017). 

 

Average time series were extracted from each region based on the Automated Anatomical 

Labelling Atlas 2 (AAL2; Rolls et al., 2015; Tzourio-Mazoyer et al., 2002). AAL atlases are widely 

used in resting state neuroimaging research and parcellate the human brain according to a 

spatially normalised high resolution single subject T1w image provided by the Montreal 

Neurological Institute (MNI). AAL atlases use a sulci-based approach to parcellate the brain 

whereby the main sulci are first delineated and then used as landmarks to define and label 

anatomical regions in 3D space. Using specially designed software, these anatomical regions 

were manually traced every 2mm on each axial slice from the MNI single subject. This resulted 

in a 3D reconstruction of the human brain which was parcellated into 120 (for the AAL2) 

anatomical regions.  

 

6.7 Leading Eigenvector Dynamics Analysis (LEiDA) 

A newly developed data-driven approach led by Dr Joana Cabral, Leading Eigenvector 

Dynamics Analysis (LEiDA; Cabral, Vidaurre, et al., 2017) was used to examine time-varying 

functional connectivity (FC). Central to this method is an understanding that the brain is a 

dynamic complex system. Research suggests that different groups of brain areas exhibit 

patterns of spontaneous correlated activity, which give rise to intrinsic functional brain 

networks (Cabral, Kringelbach, et al., 2017; Yeo et al., 2011). Thus, brain activity (i.e., BOLD 

time-series) can be expressed as a repertoire of coupled dynamical units or phase-locking 

mechanisms (phase-locking is a kind of synchrony in systems organised in time and space). 

On a high-level, LEiDA detects recurrent patterns of phase coherence, termed phase-locking 

(PL) states, and quantifies properties of these states, such as how often they are likely to be 
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occupied (probability of occurrence), and for how long (duration/dwell time). These PL states 

have been shown to map onto known resting state networks and relate to cognitive and 

emotional processing (Alonso Martínez et al., 2020; Cabral, Vidaurre, et al., 2017; Figueroa et 

al., 2019; Lord et al., 2019).  

 

Below, the theory underpinning the LEiDA approach is described and illustrated in Figure 6.3. 

To allow other researchers to apply LEiDA to their own datasets, Cabral and colleagues have 

provided open-source MATLAB code and software tutorials, which were used in the current 

thesis (LEiDA GitHub repository: https://github.com/PSYMARKER/leida-matlab). As reflected 

in the LEiDA description below, a 100-region (versus 120) brain parcellation was used in our 

final analyses after regions with NaN values in the AAL2 connectivity matrix derived from our 

imaging data were removed. This is further described in Chapter 7, alongside the results from 

this analysis.  

 

6.7.1 Dynamic BOLD Phasing Locking (PL) Analysis 

For each condition (rest and irritability), a NxT BOLD dataset was derived where N = 100 is the 

number of brain regions and T= 257 is the number of repetition times (TR). 

 

The first step in the LEiDA workflow involves band-pass filtering the BOLD signal between 0.01 

and 0.1 Hz before computing an analytic BOLD signal phase, 𝜃(𝑛, 𝑡), for each brain region at 

each TR using the Hilbert Transform. The Hilbert transform expresses a given signal 𝑥 in polar 

coordinates, where A represents the time-varying amplitude and 𝜃 is the time-varying phase 

or phase angle: 

 

𝑥(𝑡) = 𝐴(𝑡) ∗ cos (𝜃(𝑡)) 

 

As illustrated in Figure 6.3a, the BOLD signal phase of a region n over time is shown as 𝑒−𝑖𝜃(𝑡) 

where sin(𝜃(𝑡)) is the imaginary part of the analytic phase, and cos(𝜃(𝑡)) is the real part 

(black dotted lines). The cos(𝜃(𝑡)) of the phase angle still captures the fluctuations of the 

original BOLD signal (green) but now has a constant amplitude between -1 and 1. The red 

https://github.com/PSYMARKER/leida-matlab
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arrows represent the Hilbert transformed phases at each TR, which can be projected onto a 

complex plane that is defined by the real and imaginary axes at 𝑡 = 0.  

 

These BOLD signal phases are then used to generate a whole-brain pattern of BOLD phase 

coherence at each single time point 𝑡 by computing a dynamic BOLD PL matrix 𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) 

which estimates the phase alignment between each pair of brain regions 𝑛 and 𝑝 at each time 

𝑡 using the following equation: 

 

𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) = cos (𝜃(𝑛, 𝑡) =  𝜃(𝑝, 𝑡)) 

 

At a given TR, if two brain areas, 𝑛 and 𝑝 have BOLD signals that are completely temporally 

aligned (i.e., the phase difference = 0°), they will have a PL value = 1, and can be expressed as 

follows: 

𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) = cos (0°) =  1 

 

Conversely, if the BOLD signals of 𝑛 and 𝑝 have a phase difference of 180° (in complex plane), 

the PL value will = -1, and can be written as: 

 

𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) = cos(0°) =  −1 

 

Therefore, the dynamic PL matrix for each participant will be a 3D tensor of size 𝑁𝑥𝑁𝑥𝑇, 

where 𝑁 = 100 is the number of brain regions and 𝑇 = 257 is the total number of time 

points.  
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Figure 6.3 — Illustrative description of Leading Eigenvector Dynamics Analysis (LEiDA). LEiDA detects recurrent 
BOLD phase-locking (PL) patterns. A) For a given region (n), the BOLD signal (green) is band-pass filtered between 
0.01 and 0.1 Hz (blue) and then Hilbert transformed into an analytic signal, whose phase is represented over time 

by 𝑒−𝑖𝜃  (black line) and at each TR (red arrows). B) At a single time point, BOLD phases in all N =100 regions can 
be represented in cortical space (top). The dPL(t) matrix captures the phase alignment between each pair of 
regions (bottom). The leading eigenvector of the dPL(t) matrix, V1(t), is the vector that best captures the main 
orientation of all phases, where each element in V1(t) relates to the projection of the phase of each region into 
V1(t) (right). Blue = regions aligned with V1(t); red = regions not aligned with V1(t). C) All the leading eigenvectors 
are concatenated across participants and inputted into a k-means clustering algorithm, which subsets the data 
points into a pre-defined number of clusters k. Each cluster centroid represents a recurrent PL state. dPL = 
dynamic phase locking. This figure was adapted from Alonso Martínez et al. (2020). Copyright: Frontiers in Neural 
Circuits.  

 

6.7.2 Calculating the leading eigenvector of the phase-locking matrix 

The second step involves calculating the leading eigenvector for each 𝑑𝑃𝐿 matrix at each time 

𝑡. Therefore, for each 𝑑𝑃𝐿(𝑡), the leading eigenvector 𝑉1 (𝑡) is a 𝑁 x 1 vector that represents 

the main orientation, or global mode, of BOLD phases across all brain regions. Each element 

in 𝑉1 (𝑡) captures the projection of the BOLD phase of each brain area onto the leading 

eigenvector. When all elements in 𝑉1 (𝑡) have the same sign, it means that all BOLD phases 

are aligned with the orientation of 𝑉1 (𝑡), which indicates the global mode guiding all BOLD 

signals. On the other hand, if the leading eigenvector 𝑉1 (𝑡) possesses elements with different 

signs (positive or negative), the BOLD signals are not aligned with the leading eigenvector, 

and this categorises brain regions into two groups (blue or red) depending on their phase 
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relationship (see Figure 6.3b) (Newman, 2006). The magnitude of each element in 𝑉1 (𝑡), 

indicates the strength of the brain areas’ group membership of the group in which it has been 

placed (Newman, 2006). Given that V and -V represent the same eigenvector (i.e., they span 

the same one-dimensional subspace), a convention is used assuming that most of the 

elements have negative values (Alonso Martínez et al., 2020; Lord et al., 2019). LEiDA 

significantly reduces the dimensionality of the data by only considering the eigenvector 

associated with the leading eigenvalue instead of considering all elements of the N x 𝑁 𝑑𝑃𝐿 

matrix (Cabral, Vidaurre, et al., 2017). 

 

6.7.3 Detecting recurrent BOLD PL states 

The next step involves detecting recurrent BOLD PL states using k-means clustering which 

partitions the set of leading eigenvectors into a predefined number of clusters 𝑘 (see Figure 

6.3c). Given that the optimal number of functional networks in the brain remains under 

debate, LEiDA allows the user to run the k-means clustering algorithm with a range of 𝑘 values 

(e.g., 2 to 20), which divides the set of leading eigenvectors into 𝑘 = 2, 3, 4, … , 20. Prior 

research that has used the LEiDA approach has chosen a range of 𝑘 values that reflect the 

range of functional networks often reported in resting state literature (Yeo et al., 2011). For 

each value of 𝑘, the clustering algorithm produces 𝑘 cluster centroids with a shape of 𝑁 x 1 

vectors 𝑉𝑐, which denotes the average vector of each cluster. These centroids represent the 

recurrent BOLD PL states, which can be represented as a network in cortical space. The value 

of 𝑉𝑐(𝑛) is used to scale the colour of each brain region and links can then be plotted between 

brain areas that diverge from the global mode.  

 

The clustering algorithm also appoints a single PL state to each TR across the time series by 

identifying the closest centroid 𝑉𝑐 at each TR. From this, the 1) probability of occurrence: the 

proportion of timepoints assigned to a PL state during the scan and 2) duration/dwell time: 

the average number of consecutive time points assigned to a PL state across the scan, can be 

calculated.  From these statistics, between-group differences can be calculated with 

permutations, bootstrapping, and multiple comparison corrections.  
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6.8 Chapter conclusion  

This chapter outlined the measures and analysis methods used in Chapter 7, which is the final 

results chapter of this thesis. In Chapter 7, I report and discuss the results from our pilot study 

which explored dynamic functional brain networks in adolescent depression, and their 

relation to irritable mood, using the LEiDA approach.  
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7 Exploring dynamic functional brain networks in 

adolescent depression using a co-produced novel 

irritability task 

 

7.1 Chapter introduction  

The work outlined in this chapter directly addresses the research gaps identified and 

discussed in Chapter 5. Specifically, I pilot a novel fMRI task targeting irritability in a non-

clinical sample of youth with depressive symptoms. As our goal was to design a task that 

captures the social context in which irritability occurs, the task was co-produced with young 

people. As a first step in validating this task, I adopted a data-driven analysis approach to 

examine whether dynamic properties (e.g., probability of occurrence and dwell time) of 

functional brain networks differed between the irritability task and a standard resting state 

scan. I also explored whether the properties of these dynamic functional brain networks 

related to depressive symptoms and irritable mood in this sample of adolescents.  

 

Supplementary Information for this chapter can be found in Appendix 3, alongside the related 

material for this study that is outlined in Chapter 6.  

  

https://uoe-my.sharepoint.com/:b:/g/personal/s1889372_ed_ac_uk/EaLBSAYsO_9GgnlencPGVDUBgOn1XAFiS3cdLcQQsnOC4Q?e=UfFwdg
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7.2 Introduction 

Adolescence, a life phase spanning the ages 10-24 years, is a period of increased vulnerability 

to the onset of mental health difficulties, including depression (Sawyer et al., 2018; Solmi et 

al., 2021). Adolescent-onset depression is associated with a more recurrent and severe illness 

course, which compounds the burden of depression across the lifespan and can lead to a host 

of psychosocial and physical difficulties (Malhi & Mann, 2018; Thapar et al., 2022). Unlike 

major depressive disorder (MDD) in adults, irritable mood is an additional cardinal symptom 

of adolescent MDD, alongside low mood, and anhedonia (American Psychiatric Association, 

2013b). High levels of irritability in youth predict later depression, suicidality, and poor social 

functioning (Leibenluft & Stoddard, 2013; Stringaris et al., 2013; Stringaris, Zavos, et al., 2012), 

suggesting that irritability may be an early indicator of emotion regulation difficulties. 

Previous research suggests that both MDD and irritability are underpinned by disruptions to 

the coordination of large-scale functional brain networks involved in emotional processing 

and regulation (Kaiser et al., 2015; Nielsen et al., 2021). Importantly, adolescence is a period 

during which mood and behaviour are significantly impacted by one’s social environment 

(Blakemore & Mills, 2014). However, existing fMRI paradigms targeting irritability typically 

overlook the social context in which irritability occurs. Here, we pilot a novel resting state 

paradigm targeting irritability using a co-produced youth-researcher design to explore 

dynamic functional brain networks associated with depressive symptoms and irritable mood 

in a non-clinical sample of youth.  

 

Resting-state functional magnetic resonance imaging (rs-fMRI) studies have linked depression 

to aberrant functional connectivity (FC) patterns in several resting state networks (RSNs) 

involved in emotion regulation, processing, and attention. These RSNs include the default 

mode network (DMN), which comprises the medial prefrontal cortex (mPFC), lateral frontal 

cortex, temporal-parietal areas, the striatum, and the hippocampus. The DMN plays a key role 

in self-directed thought, including introspection and autobiographical memory (Andrews-

Hanna et al., 2014). The fronto-parietal network (FPN), including the dorso-lateral PFC (dlPFC) 

and posterior parietal regions, supports goal-directed behaviour, such as cognitive control 

and decision making (Zanto & Gazzaley, 2013). Finally, the salience network (SN), comprising 
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the insula and mid-cingulate regions, supports attending to salient stimuli in one’s 

environment (Corbetta et al., 2008). Specifically, meta-analytic research has shown that 

depression is related to hypoconnectivity within the FPN, and between the FPN and SN. 

Depression has also been characterised by hyperconnectivity within the DMN, between the 

DMN and FPN, and SN (Kaiser et al., 2015). Further, neural-behavioural research on RSNs in 

both adults and adolescents has shown that these dysfunctional FC patterns are associated 

with depression-related behaviours such as rumination and cognitive biases towards negative 

information (Kaiser et al., 2018, 2019; Marchitelli et al., 2022). Although research on RSNs 

associated with irritability is sparse, the existing studies suggest that the same RSNs are 

involved (Nielsen et al., 2021). Taken together, the heightened vulnerability to depression 

during adolescence may reflect maladaptive alterations in these functional networks.  

 

Most research to date has studied depression-related FC from a static perspective, whereby 

an average FC measure is computed across the entire time-series. Importantly, this approach 

does not capture the spontaneous waxing and waning of brain network activity over time 

(Iraji et al., 2021). Over the past decade, there has been a growing emphasis on developing 

methods that capture the dynamic nature inherent to functional networks, an approach 

termed dynamic FC (dFC) (Calhoun et al., 2014; Sakoğlu et al., 2010). This work has shown 

that brain activity comprises time-varying, reoccurring patterns of the coupling and 

uncoupling of brain regions. Further, these recurrent spatiotemporal configurations (dynamic 

FC states) and their properties (e.g., probability of occurrence, dwell time, and transition 

profiles) contain important information that can assist our understanding of the processes 

underlying cognition and behaviour (Cabral, Vidaurre, et al., 2017; Iraji et al., 2021; Sakoğlu 

et al., 2010; Zalesky et al., 2014). However much more research is needed in this area. For 

example, depression has been associated with both increased (Kaiser et al., 2016; Long et al., 

2020) and reduced (Marchitelli et al., 2022) dynamic variability in the limbic network, FPN and 

DMN. Although investigating the characteristics of dFC within a psychiatric context is still a 

nascent field of research (Iraji et al., 2021), emerging findings suggest that it could be used to 

successfully predict treatment outcomes to electroconvulsive therapy in MDD patients (Sendi 

et al., 2021). 
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Over the past two decades, several methods have been put forward to examine the dynamics 

of functional brain networks and how they relate to cognition and behaviour. A number of 

studies have proposed that the properties of dFC, such as the duration of time spent in certain 

brain networks, could serve as a biological marker for psychiatric disorders such as depression 

(Alonso Martínez et al., 2020; Figueroa et al., 2019) and schizophrenia (Farinha et al., 2022; 

Rabany et al., 2019). While the sliding window approach has been the most common method 

used to evaluate dFC (Allen et al., 2014; Handwerker et al., 2012), other techniques with 

higher temporal resolution have emerged in recent years, such as co-activation pattern 

analysis (Karahanoğlu & Van De Ville, 2015; Liu et al., 2013; Tagliazucchi et al., 2012) and 

phase-coherence pattern analysis (Cabral, Vidaurre, et al., 2017; Glerean et al., 2012; Hellyer 

et al., 2015). By definition, co-activation pattern analysis methods, such as point process 

analysis (Tagliazucchi et al., 2012) and innovation-driven co-activation patterns (iCAPs) 

analysis (Karahanoğlu & Van De Ville, 2015), are only sensitive to simultaneous blood-oxygen-

level-dependent (BOLD) signals that exceed a certain threshold, which in turn are used to 

identify dynamic brain states. On the other hand, phase-coherence techniques are able to 

capture temporally delayed associations between brain regions, which may better reflect the 

ultra-slow, oscillating nature of resting state brain networks (Cabral, Kringelbach, et al., 2017; 

Deco & Kringelbach, 2016; Gutierrez-Barragan et al., 2019; Roberts et al., 2019). 

 

Leading Eigenvector Dynamics Analysis (LEiDA) is a recently developed phase-coherence 

approach that relies of the detection of instantaneous (i.e., at each single timepoint) 

recurrent phase-locking (PL) patterns (Cabral, Vidaurre, et al., 2017). LEiDA focuses on the 

relative phase of the BOLD signal by determining how each BOLD phase projects onto the 

leading eigenvector of all BOLD phases at each timepoint across the scan. This approach 

represents a significant step forward in dFC research as it reduces the dimensionality of the 

data (from a NxN matrix to a 1xN vector), which allows for better convergence of the 

clustering algorithm. Importantly, LEiDA has been shown to detect PL states that overlap with 

known RSNs (Lord et al., 2019; Vohryzek et al., 2020). The dynamical properties of these PL 

states, such as occupancy probability, state dwell time/duration, and transition probabilities, 

have been associated with cognitive performance (Cabral, Vidaurre, et al., 2017), MDD history 

(Figueroa et al., 2019), non-clinical depressive symptom severity (Alonso Martínez et al., 
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2020), as well as the effects of psilocybin (Lord et al., 2019). Taken together, these findings 

suggest that LEiDA is an ideal tool with which to examine RSNs related to behaviour and the 

associated dynamic functional properties of these PL states.  

 

In this pilot study, we apply LEiDA, for the first time, to an adolescent dataset to investigate 

whether FC states differ between a resting state scan and a novel irritability task. We then 

examine if the dynamical properties of these PL states are associated with depressive 

symptom severity and irritability, as rated through behavioural questionnaires. Our study 

employs a co-produced youth-researcher design whereby young people (aged 16-20 years) 

were involved in the design and development of our irritability task. By adopting this 

approach, our aim was to design an irritability task that reflected what experiences young 

people find irritating in the present day.  

 

7.3 Methods 

7.3.1 Participants 

As previously outlined in Chapter 6, N = 30 participants aged 16-20 years (Mage = 18.86 years; 

SD = 0.83; 77.4% female) with self-reported depressive symptoms took part in our pilot study. 

Eligible participants were aged 16-20 years, free from MRI contraindications, fluent English 

speakers, did not report a past or current clinical diagnosis of autism spectrum disorder, a 

neurological or genetic disorder, or known intellectual disability, and had a Mood and Feelings 

Questionnaire (MFQ) total score ≥ 8 (Burleson Daviss et al., 2006; Costello & Angold, 1988). 

N = 25 participants in the sample were medication naïve, while 5 individuals were either 

currently (N = 3) or had previously (N = 2) taken psychotropic medication for depression 

and/or anxiety.  

 

Participants were recruited through schools and universities, third sector organisations (with 

the assistance of the NRS Mental Health Research Network), social media and via snowball 

sampling. The study protocol was approved by the Edinburgh Medical School Research Ethics 

Committee. All participants provided written informed consent prior to taking part in the 

study. Data collection took place between December 2020 and June 2021.  
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Data for one participant were unusable due to a data transfer error, which resulted in a final 

N = 29. 

 

7.3.2 Mood-related measures 

Current depressive symptom severity was measured using the depression module of the 

Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001). The PHQ-9 is self-administered 

and has been validated across a range of clinical settings and samples, including adolescents, 

as a screener for MDD (Arroll et al., 2010; Beard et al., 2016; Levis et al., 2019; Volker et al., 

2016). Irritable mood was assessed using the Affective Reactivity Index (ARI) self-report 

questionnaire (Stringaris, Goodman, et al., 2012). The ARI assesses trait-like irritability and 

has shown good internal consistency (Cronbach’s α values ≥.80)  and construct validity in both 

clinical and community samples (Mulraney et al., 2014; Stringaris, Goodman, et al., 2012). 

 

7.3.3 Irritability fMRI task  

To design a task that reflected the experience of irritability as a young person, we adopted a 

co-produced youth-researcher design whereby young people were involved in multiple stages 

of the task development. In the first phase, we asked young people (N = 25; aged 16-18 years, 

independent from the scanned sample) at local educational outreach events to briefly 

describe irritating scenarios based on their own personal experience and/or feelings. 

Specifically, they were asked to complete the following sentence: “I find it irritating when…”. 

This resulted in 51 unique irritating scenarios (listed in Table S1 in the Supplementary 

Information). We then asked another independent group of young people (N = 61; aged 16-

18 years), to rate these scenarios on a 5-point scale where 1 = “not at all irritating” and 5 = 

“very irritating” via an online survey, which was distributed to young people via social media 

and local youth groups. Importantly, the two groups involved in task development were 

independent of the study sample. The survey remained live for 5 weeks between August and 

September 2020. The 18 most-highly rated scenarios were chosen as stimuli for the irritability 

task (see Table 6.1 in Chapter 6), which was programmed in NBS Presentation® (version 19). 

Further details on the task development can be found in the Supplementary Information. 

 

https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
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7.3.4  Scanning protocol  

A 3T Siemens (Magnetom Skyra Fit) MRI scanner with a 32-channel head coil was used to 

obtain the brain images. The scanning procedure consisted of a T1-weighted sequence that 

yielded 192 contiguous 1.0mm slices (matrix = 256 x 256; FoV = 256mm; flip angle = 7°). This 

was followed by a functional imaging protocol using an axial gradient echoplanar imaging 

pulse sequence (EPI) [TR = 1400ms; TE = 30ms; matrix = 70 x 70; FoV = 210mm; flip angle = 

68°, spatial resolution = 3mm isotropic). Sixty contiguous 3mm slices were collected during 

each TR using 2x GRAPPA acceleration. Two resting state scans were collected, each lasting 

six minutes. The first was a standard resting state scan whereby the participant was asked to 

focus on a white cross on a dark screen. This was followed by the irritability task scan whereby 

participants were asked to read a series of 18 irritating scenarios presented on the screen one 

at a time and to imagine being in each scenario as vividly as possible. Each scenario was 

presented for a period of 20 seconds. Visual stimuli for the scans were presented using a 

screen in the bore of the magnet and run using Presentation® software. After the resting state 

scans, participants completed two additional fMRI tasks: a self-referential recall memory task 

and a value choice reward task, not presented here. To aid noise reduction and reduce head 

mobility, participants were provided with ear plugs and foam padding to support the head. 

The total scanning time was approximately 50 minutes. Six pulse sequences took place before 

each scan acquisition, so removing dummy scans during image pre-processing was not 

required. 

 

7.3.5 Image pre-processing and analysis 

The ENIGMA Harmonised Analysis of Functional MRI pipeline (HALFpipe) version 1.2.1 was 

used for the pre-processing, quality assessment, and single-subject feature extraction of the 

imaging data (Waller et al., 2022). HALFpipe is a semi-automated pipeline based on fMRIPrep 

(Esteban et al., 2020). The imaging pre-processing and quality control methods for this study 

are described in detail in Section 6.6.1 in Chapter 6. In the interest of chapter completeness, 

an overview is provided below.  

 

To account for low frequency noise, images were bandpass filtered at 128s (using a Gaussian 

FWHM filter) and grand mean scaling was applied with a mean of 10,000. Motion artefacts 
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were regressed out using ICA-AROMA. All images were quality controlled (QC) by four 

independent raters. An average mean framewise displacement (FD) value of <.25mm was 

used as the threshold for inclusion. Following QC, no participants were excluded from further 

analyses. Detailed QC statistics can be found in Tables S2 & S3 in the Supplementary 

Information. Average timeseries were then extracted from each brain region for each 

participant based on the Automated Anatomical Labelling atlas 120 (AAL120) (Rolls et al., 

2015; Tzourio-Mazoyer et al., 2002). These connectivity matrices were used as the input for 

LEiDA. Across all participants, any brain region with NaN values in the AAL120 connectivity 

matrix was removed (see Table S4, Supplementary Information, for the brain regions 

removed). This resulted in a 100-region parcellation of the brain.  

 

Additional bandpass filtering between 0.01 and 0.1 HZ was applied to the BOLD signals for 

each of the 100 brain areas to remove high frequency components related to respiratory and 

cardiac signals. This focused on the most-meaningful frequency range of BOLD signal 

fluctuations (Biswal et al., 1995; Cabral, Vidaurre, et al., 2017).  

 

7.3.6 Dynamic BOLD phase-locking analysis 

For each experimental condition (resting state and irritability task), a NxT BOLD matrix was 

derived where N = 100 is the number of brain regions and T = 257 is the number of volumes. 

The BOLD signal phase  𝜃(𝑛, 𝑡) for each brain region at each TR was then computed using the 

Hilbert transform. The Hilbert transform expresses a given signal 𝑥 in polar coordinates, 

where A represents the time-varying amplitude and 𝜃 is the time-varying phase or phase 

angle: 

𝑥(𝑡) = 𝐴(𝑡) ∗ cos (𝜃(𝑡)) 

 

These BOLD signal phases are then used to generate a whole-brain pattern of BOLD phase 

coherence at each single time point 𝑡 by computing a dynamic BOLD PL matrix 𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) 

which estimates the phase alignment between each pair of brain regions 𝑛 and 𝑝 at each time 

𝑡 using the following equation: 

 

𝑑𝑃𝐿(𝑛, 𝑝, 𝑡) = cos (𝜃(𝑛, 𝑡) =  𝜃(𝑝, 𝑡)) 

https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
https://uoe-my.sharepoint.com/:b:/r/personal/s1889372_ed_ac_uk/Documents/NMacSweeney_s1889372_thesis_appendices/Appendix%203%20(Ch.6%267%20Supplementary%20Information)/Appendix_3_SuppleInfo_Ch6%267.pdf?csf=1&web=1&e=AaAbI6
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At a given TR, if two brain areas, 𝑛 and 𝑝 have BOLD signals that are completely temporally 

aligned (i.e., the phase difference = 0°), they will have a PL value = 1. On the other hand, if 

the phase difference between brain regions 𝑛 and 𝑝 is 180°, the PL value will = -1. This 

produces a 𝑑𝑃𝐿 3D matrix for each participant of size 𝑁𝑥𝑁𝑥𝑇, where 𝑁 = 100 is the number 

of brain regions and 𝑇 = 257 is the total number of volumes.  

 

7.3.7 Computing the leading eigenvector of the phase-locking matrix  

A leading eigenvector for each 𝑑𝑃𝐿 matrix at each time 𝑡 is then calculated, where the leading 

eigenvector 𝑉1 (𝑡) is a 𝑁 x 1 vector that represents the main orientation of BOLD phases 

across all brain regions. When all elements in 𝑉1 (𝑡) have the same sign, it means that all BOLD 

phases are aligned with the orientation of 𝑉1 (𝑡), which indicates the global mode guiding all 

BOLD signals. On the other hand, if the leading eigenvector 𝑉1 (𝑡) possesses elements with 

different signs (positive or negative), the BOLD signals are not aligned with the leading 

eigenvector, and this categorises brain regions into two groups (blue or red) depending on 

their phase relationship (Newman, 2006). The magnitude of each element in 𝑉1 (𝑡), indicates 

the strength of the brain areas’ group membership of the group in which it has been placed 

(Newman, 2006). Given that V and -V represent the same eigenvector (i.e., they span the 

same one-dimensional subspace), a convention is used assuming that most of the elements 

have negative values (Alonso Martínez et al., 2020; Lord et al., 2019). LEiDA significantly 

reduces the dimensionality of the data by only considering the eigenvector associated with 

the leading eigenvalue instead of considering all elements of the N x 𝑁 𝑑𝑃𝐿 matrix (Cabral, 

Vidaurre, et al., 2017; Lord et al., 2019; Vohryzek et al., 2020).  

 

7.3.8 Detecting recurrent BOLD PL states 

The main aim of this pilot study was to investigate whether the BOLD PL states differed 

between a standard resting state scan and our novel irritability task. Thus, to detect recurrent 

BOLD PL states we used LEiDA to apply k-means clustering to all leading eigenvectors 𝑉1 (𝑡) 

across all participants. This resulted in 257 x 29 x 2 = 14,906 leading eigenvectors (number of 

volumes x sample size x scan conditions). The clustering produces k clusters where each k 

represents a recurrent PL state, where higher values of k demonstrate more fine-grained 
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network configurations. Given that the optimal number of functional networks in the brain 

remains under debate, LEiDA allows the user to run the k-means clustering algorithm with a 

range of 𝑘 values (e.g., 𝑘 = 2, 3, 4, … , 20). Prior research that has used the LEiDA approach 

has chosen a range of 𝑘 values that reflect the series of functional networks often reported 

in resting state literature (Alonso Martínez et al., 2020; Figueroa et al., 2019; Lord et al., 2019). 

Here, we did not aim to determine the optimal number of PL states and instead, we were 

interested to see if there was a PL state that was consistently significantly different across the 

resting state and irritability task conditions. Thus, first we chose a wide range of k = 2 to 20 

and explored how the PL states differed across scan conditions. We then chose the k number 

that demonstrated the highest proportion of significant differences between conditions. It is 

important to note that the k clustering assigns a single PL state to each timepoint, which is 

independent of the other values of k and results in independent clustering models (Figueroa 

et al., 2019).  

 

7.3.9 Between condition differences  

To investigate how the range of k PL states differed between the resting state and irritability 

conditions, for each participant we computed: 1) the fractional occupancy/probability: the 

proportion of timepoints assigned to a PL state during the scan, and 2) the dwell time/ 

duration: the average number of consecutive time points assigned to a PL state across the 

scan. We then compared these values across the two scan conditions using non-parametric 

permutation-based paired sample t-tests (10,000 permutations with 500 bootstrap samples 

per permutation). There are k number of hypotheses tested for the k PL states produced by 

k-means clustering. Thus, to correct for multiple comparisons, we set a significance threshold 

of 0.05/ Σ(k).  

 

7.3.10  Association with behavioural measures 

To examine whether the properties of the PL states derived by LEiDA were associated with 

depressive symptoms (PHQ-9 total score) and irritable mood (ARI total score), we used the 

Spearman rank correlation method to investigate whether PL state probability or duration, 

for the rest and irritability condition separately, correlated with PHQ-9 and ARI total scores. 
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We also examined whether these PL states properties were correlated with age and motion. 

We corrected for multiple comparison using the Bonferroni correction method.  

 

7.3.11  Code availability statement  

The LEiDA analysis was conducted in MATLAB version R-2022a. We used the publicly available 

LEiDA code provided by Cabral and colleagues on the LEIDA MATLAB Toolbox GitHub: 

https://github.com/PSYCHOMARK/leida-matlab#leida-analysis-k. All code for the current 

project is available on the GitHub repository for this project: 

https://github.com/niamhmacsweeney/LEiDA_irritability_study 

  

https://github.com/PSYCHOMARK/leida-matlab#leida-analysis-k
https://github.com/niamhmacsweeney/LEiDA_irritability_study.git
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7.4 Results 

7.4.1 Sample characteristics  

N = 29 youth were included in the final analyses. Our sample revealed a wide range of 

depressive symptoms as indexed by the PHQ-9 total score (range = 3 to 24). Descriptive 

statistics of the sample are reported in Table 7.1. Although our sample contained more 

females than males, t-tests did not demonstrate any significant mean differences between 

groups on age (t(9) = 0.03,  p = 0.073); PHQ-9 total score (t(23) = -2.00, p = 0.057); ARI total 

score (t(16) = -0.61 ,  p = 0.550); and on motion measures (t(11) = 1.08, p = 0.303). 

 

Characteristic Male, N = 71 Female, N = 221 

Age 
18.90 (0.92) (17.73 - 

20.04) 
18.88 (0.87) (17.16 - 

20.02) 

Depressive symptoms (PHQ-9 total 
score) 

8.86 (3.02) (5 - 13) 12.55 (6.77) (3 - 24) 

Irritability (ARI total score) 2.71 (1.80) (0 - 5) 3.27 (2.86) (0 - 10) 

Medication naïve  6 / 7 (86%) 19 / 22 (86%) 

Average motion (mean framewise 
displacement) 

0.13 (0.03) (0.10 - 
0.19) 

0.12 (0.03) (0.07 - 
0.22) 

1 Mean (SD) (Range); n / N (%) 

Table 7.1 —Irritability pilot study: Sample descriptive statistics.Average motion (mean framewise displacement) 
is the average motion across the irritability and rest conditions. 
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7.4.2 Detection of the most different brain states between rest and 

irritability conditions  

As described in the Methods section, our aim was not to determine the optimal number of PL 

states. Instead, our goal was to validate the irritability task by examining whether the 

probability and duration of the PL states differed between the irritability task and the 

standard resting state scan. To do this, we chose the clustering configuration that 

demonstrated the highest proportion of PL states whose probability and duration were 

significantly different across the resting state and irritability conditions. In Figure 7.1, we 

illustrate, for each clustering configuration of the PL state samples into k PL state categories, 

the p-values obtained from the between-condition comparisons (using paired samples t-tests) 

in terms of the probability and duration of each PL state. We corrected for multiple 

comparisons by dividing the chosen p-value threshold of 0.05 by the sum of all tests 

performed (0.05/ Σ(k); blue line in Figure 7.1). Although this is a conservative approach, we 

found that all clustering configurations of k ≥ 8, demonstrated at least one PL state whose 

probability of occurrence differed significantly between the irritability and rest conditions, 

after correction for multiple comparisons at this threshold. Of note in Figure 7.1, differences 

that withstood Bonferroni correction (0.05/ k) are indicated in green, while nominally 

significant associations are shown in red.  

 

Across the range of k values, and for both probability of occurrence and dwell time, the 

clustering configuration that demonstrated the highest and most consistent proportion of 

significant differences between conditions was k = 11, as indicated by the grey box in Figure 

7.1. Between-condition comparisons for all partition models (k = 2 to 20) are also shown in 

Figure 7.2 (probability of occurrence) and Figure 7.3 (dwell time). Like the blue line in Figure 

7.1, the blue coloured boxplots represent the comparisons that were significant after 

correction for multiple comparisons at the 0.05/ Σ(k) threshold, while the green coloured 

boxplots indicate comparisons that withstood Bonferroni correction. As illustrated in Figure 

7.2 and Figure 7.3, the second (PL state 2) and tenth (PL state 10) columns demonstrated the 

most significant differences between conditions (i.e., they have the most blue/green coloured 

boxplots), the proportion of which was greatest for the clustering configuration k = 11. 
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Figure 7.1 — Significance of between-condition differences in phase-locking (PL) state probability and duration 
as a function of k. For each clustering configuration of the sample into k = 2 to 20 states, we plot p-values 
associated with the between-condition comparison between the resting state and irritability task in both PL state 
probability (a) and duration (b). We find that, even though most PL states do not show significant differences 
between groups (black dots falling above the 0.05 threshold, red dashed line), for all k > 2, there is at least one 
PL state that falls below (or very close to) the corrected threshold by the number of clusters ( <0.05/k, green 
dashed line) and/or the corrected threshold for all performed tests (0.05/ 𝛴(𝑘), blue dashed line). The partition 
model that demonstrated the highest and most consistent proportion of significant differences between 
conditions across the range of k values, k = 11, is highlighted by the grey boxes.  
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Figure 7.2 — Boxplots showing the differences in phase-
locking (PL) state probability between the rest and irritability 
conditions for all clustering configurations k = 2 to 20. 
(indicated on the y axis). The PL state partitions (1 to 20) are 
shown on the x axis, with column 1 representing the global 
mode. Black boxplots indicate PL states that did not show 
significant differences between conditions. Red boxplots 
were comparisons that passed the standard threshold 
(<0.05) but did not survive correction for multiple 
comparisons. Green and blue boxplots were significant at the 
thresholds (<0.05/k) and (0.05/ 𝛴(𝑘)), respectively. The rest 
condition is the right box in the boxplot while the irritability 
condition is the left box (see zoomed detail in light blue 
circle).  
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Figure 7.3 — Boxplots showing the differences in phase- 
locking (PL) state dwell time (duration) between the rest 
and irritability conditions for all clustering configurations 
k = 2 to 20. (indicated on the y axis). The PL state 
partitions (1 to 20) are shown on the x axis, with column 
1 representing the global mode. Black boxplots indicate 
PL states that did not show significant differences 
between conditions. Red boxplots were comparisons 
that passed the standard threshold (<0.05) but did not 
survive correction for multiple comparisons. Green and 
blue boxplots were significant at the thresholds (<0.05/k) 
and (0.05/ 𝛴(𝑘)), respectively. The rest condition is the 
right box in the boxplot while the irritability condition is 
the left box (see zoomed detail in light blue circle).  
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7.4.3 Relevant PL states  

 
In Figure 7.4, we demonstrate the complete repertoire of PL states that are produced by LEiDA 

when k = 11 is chosen. This shows distinct network configurations that occur, dissolve, and 

reoccur in all participants across the scan. Notably, the global state (PL state 1) was occupied 

most often and demonstrated the most variance across participants. In this PL state, all BOLD 

signals are aligned which represents a slowly changing global mode of BOLD activity. These 

networks are represented in matrix format in Figure 7.5 and shown alongside the links in the 

cortex that LEiDA used to derive the brain functional networks. Moreover, the networks 

returned by LEiDA overlap with previously described RSNs by Yeo et al. (2011), as illustrated 

in Figure 7.6. 
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Figure 7.4 — Phase-locking (PL) brain states for a clustering configuration of k = 11. Panel a) shows each PL state represented in Yeo et al. cortical space and panel 
b) shows the PL states represented as BOLD phase projections into V1 (Global mode or FC state 1) for the 100 brain regions included in the parcellation. Panels c) and 
d) show between-condition (“_irrit_” = irritability; “_rest_” = rest) comparisions of fractional occupancy (probability) and dwell time, which are coloured according 
to the Yeo et al. cortical space atlas. The PL states that demonstrated significant between-condition differences are highlighted in the grey boxes. 
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Figure 7.5 — Repertoire of recurrent phase-locking (PL) states obtained with a clutering configuration of k = 11. a) PL states represented in Yeo et al. (2011) cortical space. 
Functionally connected regions (represented as spheres) are coloured in blue and red links are plotted between AAL areas with >400 MNI voxels contributing to each resting 
state network. b) PL states are also represented as the outer product of Vc (where c is a PL state from 1 to 11 for k =11), which is a 100 x 100 matrix representing the number 
of brain regions, where positive (red) values indicate the product of Vc elements with the same sign, which can be positive or negative.  
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Figure 7.6 — Overlap of the 10 non-global phase-locking (PL) states with seven canonical resting-state networks (RSNs) as per Yeo et al. (2011).We compared 
the 10 non-global PL states obtained with LEiDA (for k = 11) with the RSNs by calculating the Pearson’s correlations between 1 x 100 centroid vectors Vc 
(shown in Figure 7.5) and the 7 Yeo et al. (2011) RSNs. Asterisks denote significant correlations with p-value <0.001. 
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Our results demonstrated a PL state (PL state 2) that appeared consistently more and lasted 

longer during the resting state scan condition compared to irritability condition. This PL state 

comprised a brain network including medial frontal (right and left frontal superior gyri) and 

orbitofrontal regions (right and left olfactory cortex, right rectus, left orbitofrontal cortex) as 

well as postcentral areas (left postcentral gyrus) (Figure 7.7a). When this data-driven PL state 

was mapped onto the Yeo et al. (2011) RSN parcellation, it was derived as part of the default 

mode network (DMN) indicated in the colour orange in Figure 7.7b. As shown in Figure 7.7c 

and Figure 7.7d, respectively, PL state 2 occurred more frequently (16% compared to 12.4%, 

p < 0.001, (0.05/ Σ(k) correction threshold) and lasted longer when occupied (2.6 seconds 

compared to 2.2 seconds, p < 0.001, Bonferroni correction threshold).  

 

The results returned by LEiDA revealed a second PL state (PL state 10) that, in contrast to PL 

state 2, appeared consistently more and was occupied for a longer duration during the 

irritability condition compared to the resting state scan condition. This PL state comprised a 

network made up mostly of medial and inferior frontal areas (right and left superior frontal 

gyri, left and right orbital frontal gyri), parietal regions (left and right parietal gyri, the left 

insula, the right postcentral gyrus), and occipital regions (left and right inferior occipital gyri, 

the right fusiform gyrus) (Figure 7.8a). Mapping this state onto the Yeo et al., RSN parcellation 

derived it as the fronto-parietal network (FPN), indicated in the mustard yellow colour in 

Figure 7.8b. As illustrated in Figure 7.8c and Figure 7.8d, respectively, PL state 10 occurred 

more frequently (4.9% compared to 2.2%, p < 0.001, (0.05/ Σ(k) correction threshold) and 

for a longer duration when occupied (2.4 seconds compared to 2 seconds, p < 0.001, 

Bonferroni correction threshold) during the irritability task compared to the resting state 

condition.  
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PL State 2 

Figure 7.7 — Phase-locking (PL) state 2 for K = 11, which is characterised by regions of the default mode network 
(DMN). Panel a) shows the projections of the phase of each brain region onto the leading eigenvector (V1) arranged in 
order of BOLD signal phase alignment. Brain areas whose phase diverges from V1 comprise PL state 2 and are the first 
brain areas listed. Panel b) represents PL state 2 in cortical space and matrix format, while between-condition 
comparisons for fractional occupancy (probability) and dwell time (duration) are shown in panels c) and d), 
respectively. Irritability condition = “_irrit_” and rest condition = “_rest_”. 
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Figure 7.8 — Phase-locking (PL) state 10 for K = 11, which is characterised by regions of the fronto-parietal 
network (FPN). Panel a) shows the projections of the phase of each brain region onto the leading eigenvector 
(V1) arranged in order of BOLD signal phase alignment. Brain areas whose phase diverges from V1 comprise PL 
state 10 and are the first brain areas listed. Panel b) represents PL state 10 in cortical space and matrix format, 
while between-condition comparisons for fractional occupancy (probability) and dwell time (duration) are shown 
in panels c) and d), respectively. Irritability condition = “_irrit_” and rest condition = “_rest_”. 
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7.4.4 Clinical relevance of PL states  

To investigate whether the properties of the PL states derived by LEiDA were associated with 

depressive symptoms (PHQ-9 total score) and irritable mood (ARI total score), we tested 

whether PL state probability or duration correlated with PHQ-9 and ARI total scores, using the 

Spearman rank correlation method. This analysis was undertaken separately for the irritability 

condition and resting state condition.  

 

7.4.4.1 Irritability condition — correlation between functional brain state properties and 

clinical measures 

During the irritability task, for k = 11, we found that the duration of PL state 11 was negatively 

correlated with depressive symptoms (r(27) = -.49, p = 0.007). As illustrated in Figure 7.9a, 

this PL state is characterised by a network comprising frontal, occipital and limbic regions such 

as the frontal superior gyrus, calcarine, amygdala, hippocampus, cingulate, and insula. 

Notably, this correlation between PL state 11 and depressive symptoms did not remain 

significant after correction for multiple comparisons, using Bonferroni correction. For this 

clustering configuration (k = 11), no other significant correlations (at p ≤ 0.01) were found 

between the brain state properties and depressive symptoms or irritable mood. 

 

Moving beyond the partition model used in our earlier analyses (i.e., k =11), we explored 

whether the probability or duration of the PL states correlated with depressive symptoms or 

irritable mood across the remaining clustering configurations, i.e., k = 2 to 20 (excluding k = 

11). Similar to our findings for k = 11, we found that for k = 20, the duration of a fronto-

occipital-limbic network (PL 7) was negatively correlated with depressive symptoms (r(27) = -

.64, p = 0.0001), with statistical significance surviving correction for multiple comparisons (see 

Figure 7.9b). Further, we found that irritable mood (ARI total score) was also negatively 

correlated with the probability of occurrence of PL states that comprised fronto-occipital-

limbic networks, namely, PL 14 (r(27) = -.49, p = 0.007) and PL 15 (r(27) = -.48, p = 0.007) for 

k =17 (Figure 7.9c) and k =15 (Figure 7.9d), respectively. On the other hand, the duration of 

PL 15 for k = 18 (Figure 7.9e), comprising parts of the DMN, was positively associated with 

irritable mood (r(27) = .49, p = 0.006). These correlations did not remain significant after 

correction for multiple comparisons.  
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7.4.4.2 Rest condition — correlation between functional brain state properties and clinical 

measures 

For the rest condition, the only significant correlation between the PL state properties and 

clinical measures was found between the probability of PL 18 for k = 20 (Figure 7.9f), which 

was negatively associated with depressive symptoms (r(27) = -.50, p = 0.005). This PL state 

comprised a network of fronto-parietal regions. Notably, this PL state was also found to be 

significantly different between the rest and irritability conditions. For example, during the 

irritability task, this brain state occurred more frequently compared to the rest condition 

(2.6% vs 0.5%). The statistical significance of this correlation did not withstand correction for 

multiple comparisons.  

 

7.4.4.3 Irritability and rest conditions — correlations with age and motion 

We also explored whether age and motion (indexed via an average mean framewise 

displacement measure across both conditions) were correlated with the probability or 

duration of PL states across all values of k in both conditions separately. In the irritability 

condition, age was positively associated with the duration of PL state 8 for k =17 (r(27) = 0.48, 

p = 0.008) and PL state 6 for k = 19 (r(27) = .53, p = 0.003), which constitute parietal and 

occipital-temporal networks, respectively. These correlations did not remain significant after 

correction for multiple comparisons was applied. Across both conditions, no other significant 

correlations (at p ≤ 0.01) were found between the PL state properties and age and motion.
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Figure 7.9 —Dynamic brain states associated with depressive symptoms and irritable mood. Phase locking (PL) brain states that that were significantly associated with 
depressive symptoms (a-b) or irritable mood (c-e) in the irritability task condition, and irritable mood in the rest condition (f). The negative correlation between PL state 
7 and depressive symptoms remained significant after correction for multiple comparisons, highlighted in the green box. 
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7.5 Discussion  

This study investigated differences in dynamic FC patterns during a standard resting-state 

scan compared to a novel irritability task in a sample of youth with depressive symptoms. 

Using the LEiDA approach, the expression of two PL states was significantly different between 

the rest and irritability conditions in terms of probability of occurrence and duration. 

Specifically, during the rest condition, there was increased occupancy and duration of a PL 

state defined by dominance of the DMN, and a decreased occupancy and duration of a PL 

state characterised by the FPN. The opposite pattern of results was found during the 

irritability condition — namely an increased occupancy and duration of a PL state overlapping 

with the FPN, and a decreased occupancy and duration of a PL state characterised by the 

DMN. These two states were found to be significantly different across a range of clustering 

configurations. Within each condition, we also examined whether the occupancy and 

duration of these dynamic functional brain states were correlated with depressive symptoms 

or irritable mood. Within the irritability task, the occupancy and duration of PL states 

characterised by a fronto-limbic-occipital network were negatively correlated with depressive 

symptoms and irritable mood across a range of partition models. This differs from the rest 

condition whereby a negative association was found between the occupancy of a PL state 

characterised by the FPN and youth depressive symptoms.  

 

Taken together, our results suggest that our novel irritability task induces greater occupancy 

and duration of a dynamic brain state characterised by the FPN. The distinct PL patterns 

observed between the brain at rest and during the irritability task provide initial evidence for 

the validation of this task that was designed with young people with the aim of creating a 

paradigm that reflected the social nature of irritability in adolescence. Further, we found 

preliminary evidence to suggest that during the irritability task, individuals with higher 

depressive symptoms and irritability spend less time in brain states characterised by a fronto-

limbic-occipital network. Given that these brain regions underpin psychological processes 

such as emotion regulation, our results suggest that youth with greater levels of depressive 

symptoms and/or irritability may have a reduced ability to regulate their emotions when 

presented with an irritating situation. Importantly, the observed associations are correlations 



7| Exploring dynamic functional brain networks in adolescent depression using a co-
produced novel irritability task 

 187 

and therefore should not be interpreted as causal. Moreover, many of these correlations did 

not withstand correction for multiple comparisons. This highlights the need for further 

investigation, using a larger sample, into the behaviour underpinning the increased 

occupancy of these functional brain networks during our novel irritability task.  

 

7.5.1 PL states differ during the irritability task compared to the resting-state 

condition 

As this was a pilot study, our first aim was to validate our irritability task by investigating 

whether the time-varying properties of BOLD PL patterns during the irritability condition 

differed significantly from those observed during a standard resting-state scan. Our results 

show that parts of the DMN were more likely to be occupied, and stayed in for a longer time, 

during the resting state condition compared to the irritability task. These findings are 

consistent with the resting state literature which has consistently shown the dominance of 

the DMN when the brain is at rest and engaged in self-referential mental processes (Gusnard 

et al., 2001; Raichle et al., 2001). Although the DMN is comprised of a series of brain regions 

including the posterior cingulate, precuneus, medial prefrontal (mPFC) and inferior parietal 

cortices (Broyd et al., 2009), it is important to note that the PL state derived by LEiDA was 

characterised by only a subset of these regions. These brain regions were the medial superior 

frontal gyri, the left medial orbital gyrus, the olfactory cortex, the left postcentral gyrus, and 

the right gyrus rectus, which have been associated with higher order cognitive processes to 

perform functions such as planning, reasoning, and social interactions (Jobson et al., 2021; Xu 

et al., 2019).  

 

An advantage of the data-driven nature of LEiDA is that it allows a finer grained parcellation 

of the dynamic nature of known RSNs and how they vary across contexts. Here, we show that 

(mainly) medial frontal regions of the DMN were occupied less frequently during the 

irritability task compared to the resting-state condition. Interestingly, there were other 

parcellations of the DMN (e.g., PL 5 and 6) whose frequency of occurrence did not differ 

significantly between conditions. While it is difficult to draw conclusions about the functional 

relevance of this finding in a pilot study such as ours, our results show that the dynamic 
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properties of certain sub-networks within the brain’s functional architecture can vary 

substantially depending on the context.  

 

Further proof of concept for our novel irritability task comes from our finding that a PL state 

characterised by the FPN was occupied more frequently, and for a longer duration, during the 

irritability condition compared to the resting-state condition. The FPN network is regarded as 

a distinct control network responsible for the rapid and flexible coordination of goal-oriented 

behaviour (Marek & Dosenbach, 2018). Moreover, research suggests that the FPN is a 

functional hub in charge of the integration of brain-wide behaviour to meet the demands of 

the environment or task at hand (Cole et al., 2013). During our novel irritability task, youth 

read a series of irritating scenarios (devised by an independent sample of youth) and were 

asked to imagine being in that situation as vividly as possible. The increased occupancy and 

duration of a brain state implicated in cognitive control during the irritability condition 

compared to the rest condition suggests that the task is impacting behaviour in potentially a 

few ways. On one hand, the higher levels of occupancy of the FPN during the irritability task 

could represent participants processing the new information presented in the task (i.e., the 

irritating scenario) and then co-ordinating their behaviour (i.e., imagining being in that 

scenario). However, if this state just arose by attending to the new information of the 

irritating scenario, we would have expected to see differences in the dorsal attention network 

between conditions.  

 

Another alternative explanation of this pattern of dynamic functional brain networks is that 

the brain state induced by our task is associated with irritability. As discussed further in 

Section 7.5.2, within the irritability task, we observed more numerous associations with 

depressive symptom severity and irritable mood, compared to the resting state condition. 

Given that our task asks individuals to imagine being in the irritating scenario presented as 

vividly as possible, the observed pattern of results could reflect varying degrees of adaptive 

emotion regulation. For example, the negative association observed between the occupancy 

probability/duration of a limbic-frontal-occipital brain network and depressive symptom 

severity/irritable mood suggests that individuals with less severe depressive symptoms 

and/or irritable mood spend more time in brain networks involved in emotion regulation, 
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while the opposite pattern of results is seen for young people with more severe depressive 

symptoms and greater irritable mood.  

 

Indeed, several studies — albeit from a static FC approach — have used frustrative non-

reward paradigms to induce a frustrated/irritable mood in clinical- and community-based 

youth samples and have found changes in the neural activation of limbic regions, such as the 

anterior cingulate cortex, amygdala, and striatum (Tseng et al., 2019; Pawliczek et al., 2013; 

Deveney et al., 2013). While we do not see differences in the dynamic properties of the limbic 

network (as defined by the Yeo et al. (2011) RSN parcellation) between conditions (i.e., 

irritability vs rest), we do observe increased occupancy of a brain state (PL state 10) 

comprising regions involved in socio-emotional processing (e.g., the insula) during the 

irritability condition (Uddin et al., 2017). Given that our task was specifically designed to 

capture the social nature of irritability in adolescence, this may explain why there is not a 

greater degree of overlap with the aforementioned findings from frustrative non-reward 

studies, which often do not capture the social context in which irritability occurs (Lee et al., 

2022). Further, another novelty of our study is that it examines the temporal dynamics of 

brain functional networks, which have not been investigated in an irritability context before. 

To better understand the neural basis of youth irritability, future research should examine 

different (social and non-social) irritability paradigms simultaneously using both static and 

dynamic FC approaches in a larger sample. Nonetheless, our study provides initial validation 

of an irritability task that captures the social nature of irritability during adolescence using a 

dynamic FC approach. Importantly, the current study highlights the value and feasibility of co-

produced research as a way to design and develop fMRI paradigms that reflect the real-world 

experience of youth.  

 

7.5.2 Differences in dynamic functional network properties correlate with 

depressive symptoms and irritable mood  

We observed stronger and more numerous correlations between depressive symptoms and 

irritable mood and the probability and duration of brain networks in the irritability task 

compared to the resting-state condition. This provides further preliminary evidence that our 

irritability task may access a phenotypically relevant state. Looking at the functional networks 
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related to depressive symptoms, we find that the duration of a PL state characterised by 

limbic (e.g., the amygdala, hippocampus, cingulate, and insula), occipital and frontal regions 

is negatively associated with depressive symptoms and irritable mood during the irritability 

task. As our study is the first dynamic functional connectivity study focused on irritability, it is 

difficult to situate these findings within the broader literature, especially because exploring 

static FC approaches or traditional frustrative non reward paradigms alongside our novel task 

was beyond the scope of our pilot study. However, previous dynamic FC studies in adult 

depression have shown increased variability in fronto-limbic networks and the DMN (Kaiser 

et al., 2016; Long et al., 2020). Here, the shorter duration that youth with higher depressive 

symptoms spend in fronto-limbic networks could represent a similar increased variability, 

which is in line with the aforementioned studies. On the other hand, we found a positive 

correlation between duration of the DMN occupancy and depressive symptoms, suggesting 

reduced temporal variability. However, this finding is consistent with another recent study 

focused on adolescent-onset depression (Marchitelli et al., 2022), which found reduced 

temporal variability in the DMN but also in the limbic network and FPN. Together, these mixed 

findings underscore the need for further research in this area.  

 

Though it is difficult to contextualise our irritability task findings with regards to the broader 

fMRI-depression literature, a handful of standard resting state studies using the LEiDA 

approach have emerged in recent years and provide some interesting considerations (Alonso 

Martínez et al., 2020; Figueroa et al., 2019). Alonso-Martínez and colleagues also used a non-

clinical depression sample but grouped individuals into high and low depression during a 

resting state scan. They found that participants in the high-depression group spent more time 

in a brain state that connected the DMN (particularly the precuneus) and FP network, and 

less time in the visual and dorsal attention network. The authors suggests that, in line with 

other studies, the pattern of shifting from the DMN to other networks could reflect 

maladaptive thinking styles, such as heighted rumination (Hamilton et al., 2015; Marusak et 

al., 2017). The other depression relevant LEiDA study by Figueroa et al. focused on remitted 

MDD and found that individuals recovering from depression were less able to access a 

widespread brain network linking frontal, DMN, striatal and attention areas, and when this 

state was occupied, it lasted for a shorter duration. This finding could reflect a reduced ability 
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of individuals with remitted-MDD to engage cognitive control processes, especially those 

related to emotion regulation. The current findings demonstrate a similar pattern of results 

— during the rest condition, a brain state comprising a fronto-limbic-parietal network was 

negatively associated with depression symptoms, which may suggest impaired cognitive 

control. Importantly however, it is not appropriate to compare our behavioural findings 

directly to the related LEiDA studies because of the different analysis designs employed. Due 

to the pilot nature of our study, our non-clinical sample was not large enough to examine 

between-group differences in dynamic functional brain states between depressed and non-

depressed youth. Further, the associations observed between functional brain states and 

clinical measures were correlational in nature, many of which did not survive correction for 

multiple comparison, and therefore any conclusions presented here are tentative. Notably, 

motion was not found to be associated with dynamic brain state properties in the current 

study which is important given the known concerns surrounding motion-related noise 

artefact in dFC research (Chen et al., 2017). 

 

7.5.3 Strengths and limitations  

While the novelty and co-produced nature of this study is a clear strength, it is not without its 

limitations. Firstly, the small sample size (N = 29) significantly limits our ability to draw firm 

conclusions about how dynamic functional brain networks relate to depressive symptoms and 

irritable mood in adolescence. However, our proof-of-concept study has laid a strong 

foundation upon which to build future research. We have shown that it is feasible to work 

with young people to design and develop an fMRI paradigm, an experience that has been 

rewarding and enriching for all members of our study team. Secondly, although certain brain 

states (e.g., limbic-fronto-occipital networks) present during our irritability task were 

correlated with irritable mood, the measure we used to assess irritability captured trait 

irritability (Stringaris, Goodman, et al., 2012). Our study would have been strengthened if we 

had also asked participants to rate how irritating they found the scenarios presented in the 

task, and then investigated how these ratings of state-irritability related to dynamic brain 

state properties. Additionally, the self-directed nature of the irritability task, with no direct 

behavioural read-out, means that we cannot be sure that the participants were doing what 

they were asked to do, nor how they were doing it. For example, were the participants really 
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imagining being in the irritating scenarios presented during the task; did the extent to which 

they engaged with the task vary over the task epoch and was it dependent on the nature of 

the irritating scenario. This caveat could have added variability to our data, especially in youth 

with depressive symptoms, given that concentration and motivation difficulties are 

symptoms of depression (American Psychiatric Association, 2013b). It is also important to 

note that the data for this study was collected during the Covid 19 pandemic and thus the 

mental health measures collected could have been inflated by the ongoing social and personal 

stress associated with this period (Kwong et al., 2021). 

 

7.6  Chapter conclusion  

This study highlights the promise of whole brain dynamic FC analyses as a way to examine the 

neural correlates of irritability in adolescent depression using a novel irritability task co-

produced with young people. The distinct functional brain state patterns observed between 

the irritability task and resting state condition provide preliminary evidence that validate our 

task as a method to examine the neural basis of irritability in a way that reflects the social 

context in which irritability occurs. Further, we find that higher irritability and depressive 

symptoms were associated with a shorter duration of time spent in networks comprising 

frontal, limbic, parietal, and occipital regions. This could reflect increased dynamic variability 

and may underpin maladaptive cognitive processes, such as impaired emotion regulation and 

rumination, that characterise depression. Using a novel LEiDA approach together with our 

own co-produced task, our work lays a strong foundation upon which to explore aberrations 

in dynamic functional brain networks associated with core symptoms of high-burden diseases 

such as depression, which will help pave a path towards novel intervention targets. 
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8 General Discussion  

 

8.1 Chapter Introduction  

The overall aim of this thesis was to understand how brain structure and function, pubertal 

maturation, and irritability, all of which undergo immense change during adolescence, are 

associated with depression during adolescence. A central feature of this thesis was the use of 

multi-modal neuroimaging methods (structural and functional MRI), robust methodological 

approaches (e.g., multi-informant reports, registered report publishing format, co-produced 

research design), and whole brain analyses — which help characterise the biological and 

psychosocial factors associated with the increased vulnerability to depression in adolescence.  

 

In this chapter, I first summarise the findings of this thesis before discussing these results in 

the context of the broader literature (a more specific discussion of the findings can be found 

in the individual results chapters). More specifically, I give an overview of the brain features 

associated with adolescent depression across the three studies in this thesis. I then situate 

these findings within conceptual frameworks that have been proposed to explain this pattern 

of results. Following this, I discuss the limitations of this thesis, including methodological 

concerns, and highlight directions for future research.  

 

8.2 Summary of findings 

As discussed in Chapter 1, adolescence is a peak time for the emergence of depressive 

disorders, and adolescent-onset depression is associated with a more recurrent and chronic 

illness course. Existing evidence points to both biological and socio-environmental risk in the 

aetiology of depression but the mechanistic pathways leading to depression remain poorly 

understood. If we can better understand how the immense biological, psychological, and 

social changes (and their associated mechanisms) that characterise adolescence contribute 

to this heightened vulnerability to depression, we will increase our chances at identifying 
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modifiable targets for intervention that can move young people away from mental illness 

towards wellbeing.  

 

This thesis directly addressed several key questions that will help fill the identified knowledge 

gaps, the first of which was to examine how brain structure (cortical grey matter and white 

matter microstructure) is associated with the emergence of depression in early adolescence 

(youth aged 9-10 years), as discussed in Chapter 3. Using the largest available sample at the 

time, we found that youth depression (characterised as a MDD diagnosis and depressive 

symptom severity) was associated with similar alterations in brain structure to those seen in 

adult samples. For example, we found that youth depression was associated with reductions 

in global cortical volume and fractional anisotropy, as well alterations in individual white 

matter tracts such as the superior longitudinal fasciculus and cortico-striate tract. Alterations 

in these white matter microstructural measures have previously been associated with 

cognitive control difficulties and thus may underlie the clinical manifestations of depression. 

However, using this baseline ABCD data, we also saw that global and regional surface area 

reductions were associated with youth depression. This depression-related imaging feature 

is not commonly seen in adult depression but has been reported in other adolescent 

depression neuroimaging studies. Thus, surface area reductions could reflect a specific 

adolescent-onset vulnerability to depression and may be associated with known risk factors 

to depression early in development, such as early life trauma (Opel et al., 2019).  

 

Our use of a multi-informant approach to assess youth depression revealed a number of 

important and unexpected associations that we explored further in post-hoc analyses. 

Namely, parent report of youth depression demonstrated stronger and numerous brain 

structural associations compared to youth report, which were not influenced by parental 

current mood or youth medication use. We found that youth were more likely to report 

somatic or internally focused symptoms (e.g., self-esteem, guilt), while adults more 

commonly reported youth concentration difficulties and functional impairments, which is 

consistent with previous literature (Lewis et al., 2012). Further, greater reporter discrepancy 

between parent and youth was found to be associated with factors such as family conflict and 

youth sleep disturbance, while a lower discordance in reports was related to better social 
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cohesion. Taken together, these findings suggest that while brain structural differences may 

exist early in the disease course of depression, associations between socio-environmental 

factors and reporter discrepancy warrant further consideration in the assessment of youth 

mental health (in both research and clinical settings), as well as their role in the aetiology of 

depression.  

 

The work undertaken in Chapter 4 directly builds upon the findings in Chapter 3 by exploring 

how other key biological events of adolescence, namely, the onset of puberty, is associated 

with depression risk, and the role that brain structure may play in this association. This project 

was undertaken as a registered report, whereby our hypotheses and analysis plan underwent 

peer review prior to data analysis.  

 

By leveraging the ongoing release of longitudinal data from ABCD, the results of this 

registered report demonstrated that youth with accelerated pubertal development (relative 

to same-age, same-sex peers) at ages 10-11 years were at an increased risk for depression 

two years later, when they were aged 12-13 years. There are marked differences in the 

puberty maturational timelines of males and females, whereby on average, females begin 

puberty about 18 months ahead of males. Given that the sample in this study were in the 

early to mid-stages of adolescence, and thus females were more likely to be further along in 

their pubertal maturation, the analyses were stratified by sex. Although earlier pubertal 

timing was associated with depressive symptoms in both males and females when controlling 

for age and race/ethnicity, the magnitude of effect was larger in female youth. Further, when 

we accounted for additional depression risk factors (e.g., family income, parental depression, 

and youth BMI), the association between earlier pubertal timing and depression was no 

longer significant in males. Controlling for age and race/ethnicity, our exploratory analyses 

demonstrated that while adrenarcheal and gonadarcheal timing equally contributed to the 

observed effect between earlier pubertal timing and depression in females, the effect was 

driven by the former aspect of pubertal development in males. This suggests that biological 

and socio-environmental factors may differentially influence depression risk in males and 

females that begin puberty ahead of their same-sex, same-age peers. Future work should 

consider objective (e.g., hormonal assays) and questionnaire-based assessments of pubertal 
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development alongside qualitative methods so that we can better understand the experience 

of going through puberty in the present day, and how this may differ across settings (e.g., 

school, home, amongst peers) and between males and females.  

 

Unlike the first hypothesis of our registered report, we did not find that our a priori brain 

structural measures, which primarily consisted of reduced cortical thickness and volume in 

frontal and temporal regions, as well as lower global cortical and white matter microstructural 

metrics, mediated the association between earlier pubertal timing and later youth 

depression. Further, when we undertook exploratory whole brain analyses to examine 

additional brain regions not specified in our confirmatory analyses, we did not find any robust 

evidence of mediation in the current sample. However, our results do demonstrate 

widespread associations between earlier pubertal timing and reductions in cortical thickness 

and volume in frontal, parietal, and temporal regions, which may represent accelerated 

neurodevelopment. This work makes a significant contribution to the existing literature given 

that we specifically examined pubertal timing associations with brain development by using 

a residual timing score rather than only controlling for age, as discussed further in Chapter 4.  

 

Taken together, our findings replicate prior work and demonstrate that accelerated pubertal 

development is a risk factor for adolescent-onset depression. Although we did not find that 

brain structure mediated this association, it is somewhat unsurprising that a unimodal 

measure of brain development was not found to significantly influence the association 

between earlier pubertal timing and psychology. Given the complex interaction between 

pubertal maturation, brain development, socio-environmental factors and mental health 

outcomes, future work that adopts a longitudinal network-based approach will likely yield the 

most fruitful, and clinically meaningful findings so that we can understand how the complex 

web of interactions that constitute development give rise to positive and negative outcomes.  

 

In Chapter 5, the focus of this thesis shifts from utilising “Big Data” as a way to study 

adolescent brain development and depression to a small, locally collected sample. Although 

the sample size of this study was 0.24% the size of the ABCD sample, our local neuroimaging 

study had the key advantage of including a bespoke fMRI task that was co-produced with 
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young people to answer a specific research question. Co-producing developmental science 

can help improve the ecological validity of our research design and methods and ensure that 

they are relevant to the lives of young people today (Whitmore & Mills, 2021). Thus, the 

primary aim of this pilot study was to validate this novel irritability task by comparing 

functional brain network properties during this condition to a standard resting state scan. 

Given that the brain is a dynamic system whereby brain activity is known to fluctuate over 

time, we adopted a dynamic FC approach. We used the novel data-driven LEiDA method to 

explore how functional brain network properties, namely fractional occupancy and dwell 

time, varied across the irritability and rest conditions, and how these properties related to 

depressive symptoms and irritable mood.  

 

In Chapter 7, we validate our novel irritability task by showing that time-varying properties of 

functional brain networks (as derived by LEiDA) differed across conditions. More specifically, 

we found that parts of the DMN were more likely to be occupied, and occupied for a greater 

length of time, during the rest condition compared to the irritability condition. On the other 

hand, a brain state characterised by the FPN was occupied more frequently, and for a longer 

duration, during the irritability condition compared to the rest condition. The DMN is thought 

to be more active at rest while the FPN is involved in the rapid and flexible coordination of 

goal-oriented behaviour. Thus, the current findings provide preliminary evidence that our co-

produced irritability task induces a brain state different to that at rest, and one that may relate 

to irritability or emotion regulation. Further, we found that the occupancy and duration of 

brain states characterised by a fronto-limbic-occipital network were negatively associated 

with depressive symptoms and irritable mood in this sample. Although the generalisability of 

the findings from this pilot study are limited due to the small sample size, they highlight the 

value of co-produced research with young people and lay a strong foundation for future work 

of this kind in developmental science.  

 

8.3 Limitations, methodological considerations, and future directions 

More specific discussions of the limitations of the research undertaken in this thesis are 

contained within individual chapters. Here, I discuss broader limitations of developmental 
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cognitive neuroscience research as it stands today, which are relevant to the work in this 

thesis as well. I also highlight considerations for future research.  

 

8.3.1 Depression-related neuroimaging features and current conceptual 

frameworks 

Considering the existing literature on typical neurodevelopment, the results of the current 

thesis suggest that brain structural associations with depression may represent an 

accelerated neurodevelopment. For example, the global and/or regional volumetric and 

surface area reductions that were found to be associated with youth depression in Chapter 3 

may indicate precocious development given that these cortical morphometric features have 

been found to decrease across childhood and into adolescence (Norbom et al., 2021; Tamnes 

et al., 2017). The depression related imaging features observed in Chapter 4 show a consistent 

pattern of results, particularly in the smaller volumes of some subcortical nuclei (e.g., nucleus 

accumbens) which have been found to exhibit subtle volumetric decreases across this period 

of development (Herting et al., 2018). Our findings on the brain structural features (e.g., 

reduced global and regional cortical volume and thickness) associated with earlier pubertal 

timing also suggest accelerated neuromaturation. It has been suggested that the advanced 

development of the brain (and other biological processes, e.g., puberty) may serve an 

adaptive function under adverse conditions (Callaghan & Tottenham, 2016; Colich et al., 

2020).  

 

Indeed, evidence for this “Stress Acceleration Hypothesis” as proposed by Callaghan and 

Tottenham (2016) has been found in cross-sectional research on the impact of early life 

adversity (e.g., trauma, socio-economic disadvantage) on neuromaturation. Although this 

conceptual framework was originally applied to emotional brain circuits (e.g., fronto-limbic), 

it is thought to apply more broadly to an overall accelerated biological ageing following 

adversity (Colich et al., 2020; Gur et al., 2019; Rakesh, Cropley, et al., 2021). This theoretical 

framework is complementary to more domain-specific developmental models, such as the 

maturation disparity hypothesis (Brooks-Gunn et al., 1985; Ge & Natsuaki, 2009). This 

accelerated biological ageing may manifest as early pubertal timing, which in turn creates a 
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mismatch between biological and cognitive/social development, and thus confers an 

increased vulnerability to poorer developmental outcomes like psychopathology.  

 

Importantly however, longitudinal research is needed to truly assess developmental patterns 

and the factors that shape different trajectories. Unfortunately, large-scale longitudinal 

research on adolescent brain development with multi-modal data is scarce at present but will 

soon be available with the release of follow-data from cohort studies like ABCD. Therefore, 

any conclusions made about the biological mechanisms influencing developmental outcomes 

using cross-sectional data are tentative at best. Moreover, inconsistencies have emerged 

across different developmental domains. For instance, if accelerated neurodevelopment does 

occur due to early life stress, it is unclear why youth exposed to adversity do not exhibit more 

advanced cognitive function compared to their peers. In fact, they seem to be at a significant 

disadvantage as exposure to adversity early in life is associated with lasting differences in 

cognitive and socio-emotional development (Humphreys et al., 2015; Nelson et al., 2007).  

 

The importance of considering the limitations of cross-sectional research to study 

development is underscored further by divergences between cross-sectional and longitudinal 

findings. For example, a recent review by Rakesh & Whittle (2021) found that while socio-

economic disadvantage seemed to be associated with accelerated structural 

neuromaturation in cross-sectional studies, longitudinal research suggests the contrary. A 

number of longitudinal studies have found that youth who have experienced early life stress 

(e.g., poverty, social deprivation) are more likely to exhibit a pattern of brain development 

that suggests a maturational lag (i.e., a rate of change with a flatter slope) relative to young 

people who have not experienced environmental stress. This delayed maturation can be seen 

at a global level (e.g., cortical volume) as well as regionally, such as in the volume/thickness 

of the temporal, frontal, and parietal lobes, the hippocampus, and amygdala (Barch et al., 

2020; Hair et al., 2015; Whittle et al., 2017). Moreover, these findings may help explain why 

youth from more deprived backgrounds tend to exhibit poorer cognitive function compared 

to their more privileged peers (Noble et al., 2007).  
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Synthesising the literature on brain functional development is more challenging relative to 

brain structural findings due to the wide array of tasks used to probe the same cognitive 

domain (e.g., N-back vs. delayed match-to-sample tasks are both used to assess working 

memory) and the small samples used in fMRI studies (Rakesh & Whittle, 2021). However, 

resting state findings are beginning to emerge from large studies like ABCD and suggest that 

early life deprivation is associated with widespread alterations in the functional connectivity 

of sensorimotor and executive control networks (Herzberg & Gunnar, 2020; Rakesh, Seguin, 

et al., 2021) . While this may represent atypical development, longitudinal work is first needed 

to chart typical functional brain development (both static and dynamic FC approaches) before 

we can establish deviations from the expected trajectory, and how they relate to 

developmental outcomes. 

 

Collectively, the findings from this thesis and the extant body of evidence highlight that the 

relationship between the functional and structural features of the adolescent brain and the 

emergence of depression during adolescence is one of great complexity. Moving forward, our 

research methods must adopt an approach that reflects this nuance, a consideration that is 

gaining increased attention. A recent review by Ferschmann and colleagues (2022) calls for 

the field to adopt an “ecological neuroscience” perspective in the study of brain development 

that reflects the transactional interplay with a person’s physical and social environment, and 

how this affects neurocognitive development (Ferschmann et al., 2022). If the overarching 

aim of our research as developmental cognitive neuroscientists is to understand the factors 

that influence brain development and how they in turn predict life trajectories, we need to 

prioritise refining our current methods. Although the associations between brain features and 

developmental outcomes are statistically significant, they explain a tiny proportion of the 

overall variance, which is problematic is we want to identify methods that facilitate causal 

inference (Marek et al., 2022).  

 

8.3.2 Small effect sizes 

Small effect sizes are consistently found in large-scale neuroimaging studies — the ABCD 

Study is no different, as reflected by the effect sizes reported in Chapters 3 & 4. There has 

been much debate about how meaningful these neuroimaging relationships are and what 
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they really add to our ability to predict developmental outcomes when compared to clinical 

and psychosocial data (Dick et al., 2021). The small amount of variance explained is a problem 

not just limited to neuroimaging research, genome wide association studies face the same 

difficulties in predicting complex traits, like psychiatric disorders (Timpson et al., 2018). On 

one hand, large sample sizes like that of ABCD are sufficiently powered to detect small, subtle 

effects, and some have argued that small effects can be meaningful as they accrue over time 

at the population level (Funder & Ozer, 2019). Further, due to the relatively small sample sizes 

in neuroimaging research up until very recently, the larger effect sizes previously reported are 

likely to have been greatly inflated. Given the complex web of interactions that shape 

development, as previously discussed, it is perhaps unsurprising that an individual measure 

(e.g., global cortical volume or the volume of the nucleus accumbens) only explains a small 

amount of variance in our outcome of interest (e.g., depression). Further, the vast majority 

of research within the field to date has studied neuromaturation and developmental 

outcomes from a group-level perspective, which is also likely to have contributed to the small 

effect sizes reported. If we are ever to use an “ecological neuroscience” approach that 

combines neuroimaging with other biological and psycho-social factors to reliably predict 

developmental outcomes, we need to be able to do so at the level of the individual.  

 

8.3.3 Individual variability in brain development  

Understanding individual variability in how the human brain changes across adolescence 

remains one of the most understudied areas in neuroscience today. Although large 

longitudinal MRI studies in developmental samples have only recently emerged, the focus of 

research in this area has been on group-level trajectories. As previously discussed, 

interpretations that have arisen from this work include that early life adversity is associated 

with a maturational lag in brain development, which in turn confers an increased vulnerability 

to psychopathology in adolescence. Even in cross-sectional work, like that presented in the 

current thesis, the reduced cortical thickness found to be associated with adolescent 

depression and earlier pubertal timing, has been interpreted as accelerated brain maturation, 

for example. While the observed patterns may indeed characterise specific developmental 

outcomes, the known heterogeneity in brain development across individuals means that it is 

impossible to draw any firm developmental conclusions (Becht & Mills, 2020). For example, 
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the significant variability in hippocampal volume in typically developing children and young 

adults makes it impossible to firmly conclude that depressed individuals with lower 

hippocampal volumes exhibit accelerated maturation (Tamnes, Bos, et al., 2018).  

 

Recent work that has moved beyond group-level estimates suggests that individual variability 

in brain morphometric changes over time varies across structures, by sex, and is more likely 

to occur at the transitions into and out of adolescence (Mills et al., 2021; Tamnes, Bos, et al., 

2018). Similarly, longitudinal investigations of resting state and task-based functional 

connectivity MRI have shown that there are considerable inter-individual differences in 

connectivity estimates across childhood and adolescence (Peters et al., 2016; Telzer et al., 

2018; van Duijvenvoorde et al., 2019). Recognising the individual variation inherent to human 

development must be a, if not the, central consideration in our effort to identify how 

deviations from typical development relate to the emergence of psychopathology during 

adolescence. Further, knowing when these periods of increased variability occur will help us 

identify developmental windows when interventions may be their most effective or 

determine which cognitive processes are likely to be the most responsive (Becht & Mills, 

2020). Given that at least three timepoints of data per individual are needed to model 

different growth trajectories, which are not yet available in the ABCD Study, exploring 

individual variation in brain development and how this relates to depression risk in 

adolescence, was not possible in the current thesis. However, the data needed to model 

individual developmental trajectories will soon be available (expected end of 2023), which 

makes it a very exciting time to be a researcher in developmental cognitive neuroscience!  

  

While the examples discussed to date have centred on individual variation in brain 

development, this heterogeneity extends to myriad aspects of our biology. Studying 

individual differences in biological ageing have become increasingly popular in recent years 

as large amounts of biological and phenotypic data (e.g., Ns >100,000) have been made 

available to researchers through cohort studies like the UK Biobank. Normative modelling, an 

emerging machine learning method, can be used to chart population level patterns in brain 

development, for example, from which the extent that an individual’s development deviates 

can then be calculated. A notable application of normative modelling was the publication of 
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“brain charts for the human lifespan” earlier this year (Bethlehem et al., 2022). Further, other 

researchers have harnessed the notion of individual variability to develop personalised body 

and brain “biological clocks” (Ferrucci et al., 2020; Khan et al., 2017) . This systems approach 

to the study of human development has provided insight into multi-organ aging, and how 

different biological systems interact. For example, it was found that heart and pulmonary age 

were most strongly associated with increased brain age, such that a one year increase in 

cardiovascular age, explained a 27 day increase in brain age (Tian et al., preprint). However, 

this work has only been conducted in adults to date and there are important developmental 

considerations when applying such methods in younger cohorts, such as the faster rate of 

neurodevelopment earlier in life relative to middle or later life (Vidal-Pineiro et al., 2021).  

 

Nonetheless, as longitudinal data becomes available, the work presented in this thesis could 

be expanded to examine individual differences in biological ageing across multiple domains 

(e.g., brain age (indexed via functional and structural measures), pubertal tempo (physical 

and hormonal measures), and cognitive processes) and how this relates to developmental 

outcomes. For example, it remains unknown whether individual variation in accelerated 

biological maturation or degeneration is associated with depression risk or relapse during 

adolescence and into young adulthood. Understanding the factors associated with the 

continuity (or discontinuity) between different biological ageing processes may provide 

better insight into the biological mechanisms underpinning risk for psychopathology in 

adolescence. Crucially, this could help us detect which individuals are most at risk for 

depression and provide interventions informed by their biological aging profile and the socio-

environmental context in which this is occurring. Intervening on youth depression before it 

becomes chronic or severe would allow young people to participate in society actively and 

more meaningfully during adolescence and beyond.  

 

8.3.4 Weird results from W.E.I.R.D samples?  

To date, most developmental cognitive neuroscience research (including the work in thesis) 

is based on a small slice of society from western, educated, industrialised, rich, and 

democratic (WEIRD) cultures (Henrich et al., 2010). Therefore, our understanding of the 

factors and experiences that shape brain development may only be relevant to a limited 
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proportion of the population. Whether our findings apply to other cultures or populations 

remains unknown at present and work in other settings is urgently needed. This is particularly 

pertinent in developmental research given that 90% of adolescents in the world live in low- 

and middle-income countries (LMICs; United Nations, 2017). Further, in the context of 

depression research, there may be cultural differences (e.g., language used to describe 

depressive symptoms, perceived stigma) between developed and developing countries, 

which will need to be taken into consideration when expanding research in these areas. 

Thankfully, several funding bodies (e.g., UK Medical Research Council, Wellcome Trust) have 

made health research in LMICs a strategic priority. For example, Generation Malawi is a new 

longitudinal cohort study of the mental and physical health of families in Malawi, whose study 

design was modelled on the Generation Scotland cohort in the UK.  

 

As we broaden the scope of developmental cognitive neuroscience research globally, it is also 

important to reflect on the representativeness of the research samples that exist in our own 

communities. Within WEIRD cultures, the individuals that take part in research studies are 

not representative of the population at large. This phenomenon is known as selection bias 

and is a widely acknowledged problem in population-based cohort studies. For example, 

compared to the general population, a research participant in UK Biobank is more likely to 

live in a less socially deprived area, be more highly educated, of white ethnicity, female, and 

have fewer self-reported health conditions. (Fry et al., 2017). This selection bias also applies 

to developmental cohorts (Keiding & Louis, 2016). Aware of the aforementioned caveats of 

cohort study recruitment, the ABCD Study aimed to recruit a sample that reflected US 

population demographics by using a school-based probability sampling recruitment strategy 

(Garavan et al., 2018a). While an admirable effort was made by ABCD to recruit a 

representative sample, the final baseline sample, while demographically diverse, should not 

be considered representative of all 9–10-year-olds in the US. For example, 23% and 11% of 

ABCD participants came from households with a master’s and doctoral degree, respectively, 

while the US population average for households with a master’s degree is 12% and 5% for a 

doctoral degree (Garavan et al., 2018a). Further, household education, along with race and 

distance from study site were found to be the strongest predictors of sample attrition in 

https://www.meiru.info/generation-malawi/
https://www.ed.ac.uk/generation-scotland
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ABCD, which should be a key consideration for all researchers working with this dataset going 

forward (Feldstein Ewing et al., 2022).  

 

8.3.5 Measurement considerations and applications 

Considerations about the measures and methodologies used in this thesis have been 

discussed within individual chapters, including reporter discrepancy between parent and child 

report, limitations of existing measures of pubertal development, and static versus dynamic 

FC approaches. Here, I briefly extend the discussion on a consideration that applies to all 

aspects of developmental research, namely youth engagement and co-production, which will 

be essential in subsequent research. 

 

As discussed in Chapter 5, co-producing research with young people will ensure that our 

research questions and methods are relevant to the lives of adolescents today. Given the 

significant emphasis on the environmental pathways that influence neurodevelopment, it is 

no longer sufficient to simply collect data from participants — we must also consider how the 

community might benefit from our research findings. The ABCD Study has working groups 

(e.g., the ABCD Outreach and Dissemination Working Group) whose key mission is to help 

participating families learn about the findings emerging from the study and how this might 

benefit communities. The voices and concerns of young people and their families should 

inform how we conduct and disseminate our research. For example, it will be important to 

consider how current affairs and societal issues (e.g., the rise of gun violence and restricted 

access to abortion services in the US, Black Lives Matter protests, the escalating climate crisis 

and associated climate anxiety, as well as the rise of political autocracy across the world) 

affect the developmental outcomes of young people today. Thankfully, the ABCD Study team 

are continuously adding new measures to their study protocol and data that capture the 

subtleties of the environment in which young people are growing up will be available to 

researchers. Moving forward, community advisory boards (e.g., Young Person Advisory 

Groups) can provide a framework for developmental neuroscientists to establish and sustain 

authentic partnerships between the community and academic institutions to ensure that we 

continue to collect data that are relevant to our study of development.  
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Adopting a co-produced partnership approach to research is more important than ever given 

the increasing levels of distrust in science, which has likely been driven by the spread of 

misinformation online (Philipp-Muller et al., 2022). However, the technological advances of 

today can also significantly aid our study of development. For example, intensive longitudinal 

research methods, such as ecological momentary assessment (EMA), whereby data are 

collected from individuals at multiple times throughout the day, are increasingly being used 

to study how subtle variations in behaviour relate to health outcomes. Smartphone app-

based data collection has the potential to dramatically advance our understanding of the 

neuroscience of mental health by enabling the collection of a vast quantity of data (e.g., via 

EMA measures or wearables like Fitbits) from much larger and diverse samples (Gillan & 

Rutledge, 2021). This data could then be used to complement more traditional lab-based data 

collection (e.g., MRI). Broadening the scope of the methods used within this thesis, if we 

wanted to advance our understanding of why youth that begin puberty ahead of their peers 

are at an increased risk for depression, we could adopt an EMA approach. For instance, 

alongside the collection of MRI and biospecimen data (e.g., pubertal hormones), we could 

gather information on the social experience of going through puberty on a 

daily/weekly/monthly basis (e.g., body perception, self-esteem, loneliness, attitudes towards 

peers, family, sport and social activities). This could advance our understanding of factors that 

distinguish young people who navigate adolescence but remain well from those who develop 

mental health difficulties, and help inform targeted intervention strategies.  

 

8.3.6 Shifting the focus away from risk factors 

The work contained within this thesis, as well as the literature reviewed, has overwhelmingly 

focused on risk factors for youth depression. While this approach reflects the aims and 

objectives of this doctoral thesis, future work should consider the mechanisms associated 

with resilience promoting factors. While the burden of depression falls heavily on youth, most 

young people transition through adolescence without developing a mental health disorder. 

Given that it may be easier to facilitate the introduction of resilience promoting factors into 

the lives of young people (e.g., social cohesion, physical exercise, access to green space, 

adaptive coping strategies) than mitigating known risk factors for depression (e.g., social 

deprivation, family history, trauma), it is important that we understand the processes of 
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“what went right” rather than being overly focused on “what went wrong”. By embracing the 

considerations previously discussed (e.g., longitudinal research focused on individual 

variability with an ecological neuroscience perspective as well as co-produced research), we 

can strengthen our chances of developing interventions that significantly change the worrying 

state of youth mental health today.  

 

8.4 Concluding remarks  

 

Where can it be found again, 

An elsewhere world, beyond 

 

Maps and atlases, 

Where all is woven into 

 

And of itself, like a nest 

Of crosshatched grass blades? 

 

 

-Seamus Heaney (Human Chain, 2010) 

 

It will be no easy task, but the “elsewhere world” of adolescence and the factors that shape 

developmental outcomes can be “found” and understood. This is a challenge that we must 

tackle head on if we are going to identify modifiable factors that impact neurodevelopment 

so that we can develop interventions that translate to sustained improvements in youth 

mental health. But importantly, we only stand a chance at unravelling this complex “nest” of 

interactions if we adopt an ecological neuroscience approach by connecting the impact of 

physical, social, and environmental influences on neurodevelopment. This approach must 

also be transparent and reproducible by adopting open science practices and ecologically 

valid by co-producing this work with young people — the work contained within this thesis 

has strived to embrace these frameworks as much as possible. However, given the 
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complexities of development, “team-science” and collaboration will be crucial to reaching our 

collective goal of creating a world that gives young people every chance to flourish in their 

development as they fly the nest of adolescence and enter the strange and wonderful world 

of adulthood. 
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9 Appendices 

Appendices 1-3 for this thesis are included in this section and are also available in an 

online repository here.  

  

https://uoe-my.sharepoint.com/:f:/g/personal/s1889372_ed_ac_uk/EoffUEeRgy5GqOkHjrJL8AoBdFYQrqK4vbIJwy3V7Mh50w
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Appendix 1: Supplementary Information for Chapter 3 

Brain structural associations with depression in a large early adolescent 

sample (the ABCD cohort) 

 

Shen & MacSweeney et al. 
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Supplementary methods and results 

Scanning protocols 

Protocols used for data acquisition and processing were described elsewhere(Garavan 

et al., 2018b; Lopez-Leon et al., 2008). In brief, T1-weighted data was acquired by 

magnetisation-prepared rapid acquisition gradient echo scans with a resolution of 

1×1×1 mm3, which was used for generating cortical structural measures, and diffusion-

weighted data was obtained by high angular resolution diffusion imaging scans, used 

for generating white matter microstructural measures. 

Unrelated participants 

Unrelated participants were selected by keeping the first entry of each individual family ID 

(rel_group_id: https://nda.nih.gov/general-query.html?q=query=data-

element%20~and~%20searchTerm=name:%20%22rel_group_id%22). 

QC criteria for brain structural measures 

For cortical measures, QC measures on raw imaging was first applied to remove poor-

quality raw T1 scans (data field: ‘iqc_t1_ok_ser’). Participants that had low post-

processing quality check scores (<1) for Freesurfer outcome identified (data field: 

‘fsqc_qc’) were then removed. 

For white matter microstructural measures, participants with poor-quality raw 

diffusion imaging scans (data field: ‘iqc_dmri_ok_ser’), poor-quality raw T1 scans (data 

field: ‘iqc_t1_ok_ser’) and poor quality of FreeSurfer parcellation for T1 data (data 

field: ‘fsqc_qc’, potentially indicating low quality for T1 scans) were removed from 

further analyses. We also removed subjects that had low score for post-processing 

(data field: ‘dmri_dti_postqc_qc’). Finally, as there were extreme values that caused 

the distributions of global white matter measures heavily skewed, we removed 

participants showing global FA and MD values 5 standard deviations from mean (see 

Figure S2 for sample sizes and Figure S3 for distribution before and after removing 

outliers). 

We used the data field ‘dmri_dti_postqc_qc’ for screening data after preprocessing. 

The variable is a binary variable, covering 3733 people. Among them, 224 did not pass 

QC and 3509 passed. To test the impact of post-processing QC, first we showed the 

standardised values of global fractional anisotropy (FA) and mean diffusivity (MD) 

(after removing outlying values of -/+ 5 std away from mean) in Figure S3. Secondly, 

https://nda.nih.gov/general-query.html?q=query=data-element%20~and~%20searchTerm=name:%20%22rel_group_id%22
https://nda.nih.gov/general-query.html?q=query=data-element%20~and~%20searchTerm=name:%20%22rel_group_id%22
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we conducted analysis of this subsample (N=3733) with post-processing QC data 

available and for those who passed QC in this subsample (N=3509). The main model 

of testing associations between caregiver/child report of MDD/depressive symptoms 

(DS) and regional brain measures was used. As shown in Figure S21, overall correlation 

of the standard regression coefficient/Cohen’s d for all the tests conducted were 

highly correlated (r=0.918). The uncorrected p-values were also highly correlated 

(r=0.789). 

Deriving life-time MDD definition from current and past MDD status 

The curated data from ABCD (Adolescent Brain Cognitive Development) study 

contains three MDD (Major Depressive Disorder) definitions: MDD current (field 

names: ksads_1_840_t and ksads_1_840_p for reports by children and caregivers, 

respectively), MDD past (field names: ksads_1_842_t and ksads_1_842_p for reports 

by youths and caregivers respectively) and MDD current in partial remission (field 

names: ksads_1_841_t and ksads_1_841_p). When defining the lifetime MDD 

definitions, participants who were either a case for MDD current or past definition 

would be identified as cases, and those who were controls for both current and past 

MDD definitions were identified as controls. Those who were cases for MDD current 

in partial remission were also identified as cases. Life-time definitions were derived 

for reports by caregivers and youths separately. 

Deriving total scores of DS 

DS were generated based on DSM-V (Diagnostic and Statistical Manual of Mental 

Disorders, 5th edition)(American Psychiatric Association, 2013a) criteria for the 

severity scale of. For each item, a binary outcome indicates whether the single 

symptom met clinical significance (1=Yes and 0=No). For each item, a life-time score 

was generated using the same method for generating lifetime MDD definition. The 

life-time score was then used for generating DS. 

In total there were 28 items used, which covered 15 individual DS (see Table S2). 

Among the 15 individual DS, depressed mood, anhedonia and fatigue were core 

symptoms and the rest of 12 DS were secondary symptoms. Life-time scores of these 

individual DS were used to generate a total measure of DS that includes four severity 

levels: severe, moderate, mild and none of the above. A detailed description of the 

total measure of DS can be found in Table S3.  
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Agreement between caregiver and child report 

We tested the agreement between caregiver and child report. Proportion of 

agreement for MDD diagnosis between caregiver and child report was estimated using 

the ‘agree’ function in R package ‘irr’ (version 0.84.1, https://cran.r-

project.org/web/packages/irr/irr.pdf). Tolerance of disagreement was set as 0. 

Cohen’s Kappa of DS between caregiver and child report was conducted using the 

‘kappa2’ function from the ‘irr’ R package (version 3.6.2). For both analyses, only 

participants with non-empty values for both caregiver and child reports were included 

(NMDD definition=8635, NDS measure=8599). 

Proportion of agreement between caregiver and child report of MDD diagnosis was 

95.9% (Table 2). Among all participants, 8273 were identified as controls by both child 

and caregiver report (95.8% of the total sample), 182 were cases based on caregiver 

report but not child report (2.11%), 168 were cases according to child report but not 

caregiver (1.95%), and finally 12 were cases according to both reports (0.14%). 

Agreement between caregiver and child reported DS was reported in the main text. 

Average and discrepancy of DS reported by caregivers and children and its 

association with brain structural measures 

Average reports for the severity of depression was generated for each child-caregiver 

pair. Results for the associations between the average severity and general/regional 

brain measures are shown in Figures S17-19. 

Discrepancy was generated by obtaining the absolute values of subtracting caregiver 

and child reports of DS (Figure S4). Associations between discrepancy of DS and 

general brain structural measures were tested (Figure S22). For regional measures, 

the associations with discrepancy of DS were tested on those brain measures that 

associated with caregiver report of depression (Figure S23).  

Validating DS measured by KSADS and CBCL 

In the present cohort, two types of mental health scales were used. Although we 

reported results based on KSADS, we tested DS assessed by CBCL (The Child Behaviour 

Checklist) as an additional analysis and compared the results produced using KSADS 

and CBCL. DS assessed using CBCL was based the DSM-5-oriented items. 

KSADS-derived scores of DS reported by caregivers showed high correlations with 

CBCL’s depression score based on the DSM-5 (Diagnostic and Statistical Manual of 

Mental Disorders, 5th Edition) scale (r=0.346). The KSADS DS reported by youths 

showed weak correlation with CBCL depression score (r=0.076). See Figures S24. 

https://cran.r-project.org/web/packages/irr/irr.pdf
https://cran.r-project.org/web/packages/irr/irr.pdf
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CBCL DMS-5-oriented score of depression reported by caregivers showed consistent 

results with DS assessed by KSADS reported by caregivers (Figures S25-26). 

Associations were found in general cortical surface area, volume and white matter FA 

(β ranged from -0.025 to -0.043, p ranged from 1.86×10-3 to 1.53×10-6, Figure S25). 

Overall effect sizes for regional brain measures showed high correlation with results 

for KSADS-measured DS (r = 0.713, see Figure S26). 

Depressive problems of caregivers 

A subscale of DSM-5-oriented items for depressive problems from the Adult Self-

Report (ASR) in the Achenbach System of Empirically Based Assessment was used for 

the one caregiver who accompanied the child to the study. We used the field 

‘asr_scr_depress_r’ as a score for severity of depression in caregivers (N=8633). A total 

of 14 items were used for this scale(Barch et al., 2018b). There were five participants 

who did not answer any of the questions, and thus they were removed from analysis. 

All other participants completed the entire questionnaire. This scale of DS in 

caregivers was tested to indicate recent DS, and a high proportion of reporters were 

mothers (85.66% of all caregiver reporters, NMother=7412).   

We tested the agreement between the ASR scale and self-reported history of 

depression using glm model, setting the binary variable of self-reported history as 

independent variable, and the ASR scale as dependent variable. Two measures for 

maternal risk showed the greatest agreement (OR=0.762, p<2×10-16), followed by 

measures for caregivers (OR=0.556, p<2×10-16). Measures for paternal risk showed the 

poorest agreement (OR=0.536, p<4.49×10-7). 

Recent social deprivation 

A measure of recent social deprivation was included in the analysis as a covariate. The 

measure was derived from items the parent demographics survey 

(https://nda.nih.gov/data_structure.html?short_name=abcd_lpds01), which was 

answered by parents. Participants were asked to give a ‘Yes’ (=1) or ‘No’ (=0) answer 

to seven questions: 1. Needed food but couldn't afford to buy it or couldn't afford to 

go out to get it? 2. Were without telephone service because you could not afford it? 

3. Didn't pay the full amount of the rent or mortgage because you could not afford it? 

4. Were evicted from your home for not paying the rent or mortgage? 5. Had services 

turned off by the gas or electric company, or the oil company wouldn't deliver oil 

because payments were not made? 6. Had someone who needed to see a doctor or 

https://nda.nih.gov/data_structure.html?short_name=abcd_lpds01
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go to the hospital but didn't go because you could not afford it? And 7. Had someone 

who needed a dentist but couldn't go because you could not afford it? 

The sum score of all the ‘Yes’ answers was used as the measure for social deprivation. 

The measure has a mean value of 0.936, with its minimum and maximum scores = 0 

and 14, respectively. We included this variable as the main proxy that may confound 

MDD-related deficits in brain development instead of controlling more extensively for 

socio-environmental protective/risk factors, as the latter would have restricted our 

sample with complete data to less than half of the current sample (N=4,036). 

Sensitivity analyses: site differences 

Data was collected in 22 sites across the United States. In order to test whether site 

difference makes significant impact on data, we used leave-one-out method to test 

the robustness of results. This was conducted on associations between MDD/DS and 

general brain measures. 

For each association (e.g. cortical volume ~ MDD reported by caregivers), the analysis 

was conducted 22 times. Each time, data from one site was taken out, and therefore 

analysis was performed on the remaining 21 sites. Effect sizes of leave-one-out 

analysis were then compared against the one found using the entire sample. Results 

are reported in Figures S9-12. 

Impact of differences in scanning site were assessed using leave-one-out analysis for 

the significant associations found between MDD diagnosis/DS and general brain 

measures in the total sample, described above were assessed (Figures S9-12).  

Caregiver report: All associations between MDD diagnosis/DS reported by caregivers 

and brain measures remained significant in all iterations of the leave-one-out analysis 

(p ranged from 0.037 to 3.44×10-9). Therefore, the results regarding caregiver report 

are not likely to be driven by a single site. 

Child report: Associations between DS reported by child and brain measures were also 

significant in all iterations (p ranged from 0.034 to 1.72×10-4).  For associations 

between MDD diagnosis reported by child and brain measures, 14 out of 22 iterations 

were significant (p ranged from 0.049 to 0.021) and 8 iterations were not significant 

(p ranged from 0.091 to 0.053) for sulcal depth, and 19 iterations were significant (p 

ranged from 0.047 to 0.007) and 3 were not significant (p ranged from 0.082 to 0.069) 

for FA. In summary, results for DS reported by child are not likely to be driven by sites, 

whereas results for MDD diagnosis are more heterogeneous across sites. 
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Sensitivity analysis: scanner differences 

As the three type of scanners from the major manufacturers can show significant 

impacts on the estimation of intracranial volume(Casey et al., 2018b), we added 

scanner manufacturer as an additional covariate in a secondary sensitivity model. All 

significant associations found between general brain measures and MDD/DS 

remained significant (see Figure S13). Effect sizes for the associations between 

individual brain structural measures and MDD/DS showed high correlation with 

results of the main model (r = 0.999 for standardised effect sizes, r = 0.996 for p-values, 

see Figure S14). 

Sensitivity analysis: impact of medication 

The use of antidepressants was small in this sample (N=136). However, we also 

investigated the potential impact of these on our main finding by including the use of 

antidepressants as an additional covariate in a sensitivity analysis.  

The ABCD Parent Medications Survey Inventory Modified from PhenX (short name: 

medsy01, URL: https://nda.nih.gov/data_structure.html?short_name=medsy01) was 

used to derive a variable for medication usage. The survey was used for caregivers to 

report medication intake by child in the past two weeks before the assessment took 

place. In order to estimate the effect of medication on brain imaging measures, we 

extracted reported medication intake that match the assessment date with the 

imaging assessment.  

We used two types of data columns for screening medication usage. The first one is 

the general screening question, ‘Did your child take any medications in the past two 

weeks and if so did you bring them with you?’ (field name: brought_medications, URL: 

https://nda.nih.gov/general-query.html?q=query=data-

element%20~and~%20searchTerm=name:%20%22brought_medications%22). 

Available answers were: 0 = Yes (medications taken in the past two weeks); 1 = Yes 

(medication brought with the caregiver); 2 = Refused; and 3 = Took No Medications. 

The second type of screening questions were reported medication names. Data 

columns with names of prescribed medications were used (field names: 

med1_rxnorm_p, med2_rxnorm_p, …, med15_rxnorm_p). A list of drug names were 

generated using the British National Formulary-70 (BNF 70) 

(https://www.bnf.org/products/books/) under the category of depression(Shen et al., 

https://nda.nih.gov/data_structure.html?short_name=medsy01
https://nda.nih.gov/general-query.html?q=query=data-element%20~and~%20searchTerm=name:%20%22brought_medications%22
https://nda.nih.gov/general-query.html?q=query=data-element%20~and~%20searchTerm=name:%20%22brought_medications%22
https://www.bnf.org/products/books/
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2019b). We used these drug names as key words to find matched medications as 

antidepressants. 

Combining the two types of questions, we generated a categorical variable to indicate 

medication usage:  

0 = no medication brought (brought_medications==3) & no prescribed 

medication name reported (N=5320),  

1 = medication was used for the past two weeks & no prescribed medication name 

reported (N=2665),  

2 = medication was used for the past two weeks & at least one medication 

reported & none was included in the list of antidepressants (N=1942), and finally,  

3 = medication was used for the past two weeks & at least one antidepressant 

was reported (N=136). 

In the sensitivity analysis, this variable of medication usage was included as an 

additional covariate. Results for the association between general brain measures and 

MDD/DS can be found in Figure S15. Comparison of effect sizes and p values between 

the main model and the model controlling for medication usage, associated with 

individual brain measures can be found in Figure S16. 

All associations found between general brain measures and MDD/DS remained 

significant (Figure S15). The effect sizes and p-values for the associations between 

measures of individual brain structures and MDD/DS were highly correlated with the 

results of the main model (r=0.989 for standardised effect sizes, r=0.965 for p-values, 

see Figure S16). 

Sensitivity analysis: covarying comorbidity 

We further looked at comorbid major psychiatric conditions (Bipolar I, Bipolar II, ADHD, 
Psychosis and Conduct disorder) reported by caregivers. Within the 194 cases, 132 reported 
one or more of these conditions in the present/past (68.04%) and 62 reported none 
(31.96%). There were 1612 MDD controls reported any of the above conditions (24.12%) and 
5072 reported none of these conditions, including MDD (75.88%).  

Further, a supplementary analysis was conducted to see if covarying for comorbidity may 
change the main findings regarding the associations between brain structural measures and 
parent report of depression. The additional covariate comorbidity was generated by 
summarising the comorbid major psychiatric conditions (1=with any comorbid condition and 
0=none of the comorbid conditions reported). 

Results can be found in Figures S27-28. 
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Measures for socio-environmental factors 

Measures from ABCD sum scores culture & environment – caregiver (abcd_sscep01), 

ABCD sum scores culture & environment – youth (abcd_sscey01) and ABCD sum 

scores physical health – caregiver (abcd_ssphp01) were used. The scores for culture 

and environment reported by both caregivers and children were used because the 

questionnaires contain different items.  

Item screening was conducted by removing items that have less than half of the total 

sample sizes (Discrimination Measure: dim_y_ss_mean and Mind Diet score: 

cna_p_ss_sum were thus removed from analysis). As we used the entire sample, 

therefore questionnaires that focus on one specific culture were not included in the 

analysis (ABCD Parent Mexican American Cultural Values Scale). For each participant, 

those that answered less than half of the questionnaire items in a single scale were 

set as NA for the given summary score. 

A complete list of variables included in the analysis can be found in Table S4. 
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Table S1. Sample sizes and demographic features for those with and without MDD. 

      
N 

Age 
Sex (% of Male) 

      Mean SD 

MDD 

Reported by 
caregivers 

Case + control 6878 9.9 0.62 51.7% 

Missing data 1757 9.97 0.62 54.9% 

Reported by 
children 

Case + control 6924 9.9 0.62 51.6% 

Missing data 1710 9.97 0.62 55.4% 
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Table S2. Items in the scale to assess Major Depressive Disorder (MDD) and depressive symptoms using the Kiddie Schedule for Affective 

Disorders and Schizophrenia (KSADS). When depressive symptoms were calculated, these variables were counted as one rather than two 

variables: insomnia and hypersomnia, decreased and increased appetite, weight loss and weight gain, and finally, psychomotor agitation and 

retardation. 

Field name 

DSM-V symptoms Sub-items Caregiver Youth 

Past Current Past Current 

ksads_1_1_p ksads_1_2_p ksads_1_1_t ksads_1_2_t Depressed mood (core symptom) -- 

ksads_1_5_p ksads_1_6_p ksads_1_5_t ksads_1_6_t Anhedonia (core symptom) -- 

ksads_1_159_p ksads_1_160_p ksads_1_159_t ksads_1_160_t Fatigue (core symptom) -- 

ksads_1_161_p ksads_1_162_p ksads_1_161_t ksads_1_162_t Concentration disturbance -- 

ksads_1_181_p ksads_1_182_p ksads_1_181_t ksads_1_182_t Decreased self-esteem -- 

ksads_1_177_p ksads_1_178_p ksads_1_177_t ksads_1_178_t Guilt -- 

ksads_1_179_p ksads_1_180_p ksads_1_179_t ksads_1_180_t Hopeless -- 

ksads_1_183_p ksads_1_184_p ksads_1_183_t ksads_1_184_t 
Impairment in functioning due to 
depression -- 

ksads_1_163_p ksads_1_164_p ksads_1_163_t ksads_1_164_t Indecision -- 

ksads_1_3_p ksads_1_4_p ksads_1_3_t ksads_1_4_t Irritability -- 

ksads_1_157_p ksads_1_158_p ksads_1_157_t ksads_1_158_t 
Disturbed sleep 

Hypersomnia 

ksads_22_141_p ksads_1_156_p ksads_22_141_t ksads_1_156_t Insomnia when depressed 

ksads_1_171_p ksads_1_172_p ksads_1_171_t ksads_1_172_t 
Changed weight 

Weight gain 

ksads_1_167_p ksads_1_168_p ksads_1_167_t ksads_1_168_t Weight loss 

ksads_1_165_p ksads_1_166_p ksads_1_165_t ksads_1_166_t 
Changed appetite 

Decreased appetite 

ksads_1_169_p ksads_1_170_p ksads_1_169_t ksads_1_170_t Increased appetite 

ksads_1_173_p ksads_1_174_p ksads_1_173_t ksads_1_174_t 
Psychomotor symptoms 

Psychomotor agitation in depressive disorder 

ksads_1_175_p ksads_1_176_p ksads_1_175_t ksads_1_176_t Psychomotor retardation 
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ksads_23_953_p ksads_23_964_p ksads_23_953_t ksads_23_964_t 

Self-harm and suicidal 
thoughts/attempts 

Aborted attempt 

ksads_23_952_p ksads_23_963_p ksads_23_952_t ksads_23_963_t Interrupted attempt 

ksads_23_951_p ksads_23_962_p ksads_23_951_t ksads_23_962_t 
Preparatory actions toward imminent suicidal 
behavior 

ksads_23_945_p ksads_23_956_p ksads_23_945_t ksads_23_956_t Self-Injurious behavior without suicidal intent 

ksads_23_949_p ksads_23_960_p ksads_23_949_t ksads_23_960_t Suicidal ideation active intent 

ksads_23_948_p ksads_23_959_p ksads_23_948_t ksads_23_959_t Suicidal ideation active method 

ksads_23_947_p ksads_23_958_p ksads_23_947_t ksads_23_958_t Suicidal ideation active non-specific 

ksads_23_950_p ksads_23_961_p ksads_23_950_t ksads_23_961_t Suicidal ideation active plan 

ksads_23_946_p ksads_23_957_p ksads_23_946_t ksads_23_957_t Suicidal ideation passive 

ksads_23_954_p ksads_23_965_p ksads_23_954_t ksads_23_965_t Suicide attempt 
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Table S3. Measure of DS derived from individual items of DSM-V MDD symptomology and diagnosis of suicidality. 

 

Severity level 
Criteria: (condition (a) OR condition (b)) AND condition (c) 

Condition (a) Condition (b) Condition (c) 

Severe 
Core symptoms = 3 +  

Secondary symptoms > 3 
Any suicidal attempt Identified as case 

Moderate 
Core symptoms >1 +  

Secondary symptoms = 2 to 3 
Total symptoms = 7 to 8 Not identified as Severe 

Mild 
Core symptoms >1 +  

Secondary symptoms = 1 to 2 
Total symptoms = 5 to 6 

Not identified as 
Moderate/Severe 

None of the above None of the above 
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Table S4. Measures of cultural and social environment, family environment, physical health and sociodemographic status. Field names are the 

column names used in the original ABCD curated data. For those measures that used multiple data fields, notes are provided for the methods of 

creating them. 

Field name(s) Description Category Note 

meim_p_ss_total Caregiver: Multi-group ethnic identity (total scale) Cultural and Social Environment  

via_p_ss_hc 
Caregiver: Vancouver index of acculturation (heritage 
culture) 

Cultural and Social Environment  

via_p_ss_amer 
Caregiver: Vancouver index of acculturation (American 
'mainstream' culture) 

Cultural and Social Environment  

nsc_p_ss_mean_3_items Caregiver: Neighbourhood safety Cultural and Social Environment  

srpf_y_ss_ses 
Child: School risk and protective factors (school 
environment) 

Cultural and Social Environment  

srpf_y_ss_iiss 
Child: School risk and protective factors (school 
involvement) 

Cultural and Social Environment  

srpf_y_ss_dfs 
Child: School risk and protective factors (school 
disengagement) 

Cultural and Social Environment  

fes_p_ss_fc_pr Caregiver: Family conflict Family Environment  

psb_p_ss_mean Caregiver: Prosocial behaviour Family Environment  

pmq_y_ss_mean Child: Parent monitoring Family Environment  
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fes_y_ss_fc_pr Child: Family conflict Family Environment  

psb_y_ss_mean Child: Prosocial behaviour Family Environment  

crpbi_y_ss_parent Child: acceptance by parent Family Environment  

crpbi_y_ss_caregiver Child: acceptance by secondary caregiver Family Environment  

sds_p_ss_total Caregiver: Sleep Disturbance Scale (total scale) Physical Health  

pds_p_ss_female_category, 
pds_p_ss_male_category 

Caregiver: Pubertal development scale Physical Health 
Female and male pubertal development scores were 
originally separated. 

demo_comb_income_v2 Household income Sociodemographic status  

parent1_edu, parent2_edu Highest education of parents Sociodemographic status 
A higher education between two caregivers was 
extracted as the highest education of the 
household/between caregivers 
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Table S5. Statistical models used for association tests between MDD/DS of depression and brain structural measures. 

Type Measures 
Number of 
variables 

Covariates (MDD/Depressive symptoms) 

General brain 
measures 

Mean whole-brain cortical thickness 1 unilateral 

age+age2+sex+motion(fsqc_qu_motion)+sit
e+race/ethnicity+recent social deprivation 

Total whole-brain surface area 1 unilateral 

Mean whole-brain sulcal depth 1 unilateral 

Total whole-brain volume 1 unilateral 

Global total white matter fractional 
anisotropy 

1 unilateral 

Global total white matter mean 
diffusivity 

1 unilateral 

Regional brain 
measures 

Cortical thickness 34 bilateral 
age+age2+sex+motion(fsqc_qu_motion)+sit

e+race/ethnicity+recent social 
deprivation+intracranial volume 

Cortical surface area 34 bilateral 

Cortical sulcal depth 34 bilateral 

Cortical volume 34 bilateral 

White matter fractional anisotropy 14 bilateral age+age2+sex+motion(fsqc_qu_motion)+sit
e+race/ethnicity+recent social deprivation White matter mean diffusivity 14 bilateral 
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Figure S1. Density plot of global measures of cortical surface area, thickness, volume and sulcal depth. The x-axis represents the standardised 

scores. The y-axis represents distribution density. For illustration purpose, the plots were generated using the ‘ggplot’ function in R package 

‘ggplot2’, with a smoothing adjustment of 2 and an illustration alpha (for transparency) of 0.1. 
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Figure S2. Sample sizes after each quality check (QC) step. For replication purpose, 

here in this chart we presented the field names used in the ABCD cohort. A general 

description of the fields used can be found in the Supplementary Methods. Detailed 

descriptions of each field can be found in the ABCD data dictionary (MRI raw data QC: 

https://nda.nih.gov/data_structure.html?short_name=mriqcrp102 and 

https://nda.nih.gov/data_structure.html?short_name=mriqcrp202; Freesurfer QC – 

cortical measures: https://nda.nih.gov/data_structure.html?short_name=freesqc01; 

dMRI post processing: 

https://nda.nih.gov/data_structure.html?short_name=dmriqc01) and in the quality 

check documentation (http://dx.doi.org/10.15154/1503209). 

 

https://nda.nih.gov/data_structure.html?short_name=mriqcrp102
https://nda.nih.gov/data_structure.html?short_name=mriqcrp202
https://nda.nih.gov/data_structure.html?short_name=freesqc01
https://nda.nih.gov/data_structure.html?short_name=dmriqc01
http://dx.doi.org/10.15154/1503209
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Figure S3. (a) Density plot of global measures of white matter fractional anisotropy 

(FA) and mean diffusivity (MD). The x-axis represents the standardised scores. The y-

axis represents distribution density. In the left panel, data after removing those with 

poor data quality was used. As there were extreme values causing the distributions 

heavily skewed, we then removed participants with global values 5 standard 

deviations away from mean, which results in the distribution maps in the right panel. 

For illustration purpose, the plots were generated using the ‘ggplot’ function in R 

package ‘ggplot2’, with a smoothing adjustment of 2 and an illustration alpha (for 

transparency) of 0.1. (b) Comparison between the standardised values for general 

white matter microstructural measures that were kept or removed due to post-

processing quality check (QC). Red dots represent values outside of 95% confidence 

interval. 
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Figure S4. Histogram of DS reported by caregivers and children, absolute discrepancy and discrepancy between caregiver and child reports. The 

x-axis represents DS in panel a. In panels b and c the x-axes represent the absolute discrepancy and discrepancy between caregiver and child 

(caregiver - child) reports respectively. The y-axes represent distribution density.  
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Figure S5. Associations between MDD, depressive symptoms and general measures of brain structures, controlling for ASR scale for severity of depression in caregivers. X-

axes represent standardised effect sizes with error bars showing 95% confidence interval, and y-axes represent each general measure of brain structure. Panel a shows the 

results for MDD/depressive symptoms reported by caregivers on children, and panel b shows the results for symptoms reported by children themselves. 
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Figure S6. P-value plots for associations between depressive symptoms and measures for single brain 

regions, controlling for ASR scale for severity of depression in caregivers. X axes represent measures for 

brain structural measures, and y axes represent -log10 transformed p-values. Panel (a) shows the 

results for depressive symptoms reported by caregivers on children, and panel (b) shows the results for 

symptoms reported children themselves. Solid dots represent variables associated with depressive 

symptoms after FDR-correction. For clarity, threshold for significance after FDR-correction is shown as 

the pink dashed lines.  
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Figure S7. P-value plots for associations between MDD diagnosis and measures for single brain 

regions, controlling for ASR scale for severity of depression in caregivers. X axes represent measures for 

brain structural measures, and y axes represent -log10 transformed p-values. Panel (a) shows the 

results for depressive symptoms reported by caregivers on children, and panel (b) shows the results for 

symptoms reported by children themselves. Solid dots represent variables associated with depressive 

symptoms after FDR-correction. For clarity, threshold for significance after FDR-correction is shown as 

the pink dashed lines.  

 



9 | Appendices 

 233 

Figure S8. Correlations of effect sizes and p-values between the main analysis and the analysis controlling for ASR scale for severity of depression in caregivers (Supplementary 

Methods). X-axes represent statistics of the main model and the Y-axes represent statistics of controlling for severity of depression in caregivers. The left panel shows the 

correlation of standardised effect sizes (regression coefficient/Cohen’s d depending on which independent variable was used – MDD/depressive symptoms), and the right 

panel shows the correlation of p-values. In the right panel, the grey dashed line shows the threshold of nominal significance (p < 0.05). 
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Figure S9. Leave-one-out analysis testing the association between general brain measures and depressive symptoms reported by caregivers. The 

x-axes represent standardised effect sizes. The y-axes represent the analysis leaving the given site out. The green dots represent the effect sizes 

by using the whole sample. The error bars represent 95% confidence intervals. 
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Figure S10. Leave-one-out analysis testing the association between general brain measures and depressive symptoms reported by children. The 

x-axes represent standardised effect sizes. The y-axes represent the analysis leaving the given site out. The green dots represent the effect sizes 

by using the whole sample. The error bars represent 95% confidence intervals. 
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Figure S11. Leave-one-out analysis testing the association between general brain measures and MDD diagnosis reported by caregivers. The x-

axes represent standardised effect sizes. The y-axes represent the analysis leaving the given site out. The green dots represent the effect sizes 

by using the whole sample. The error bars represent 95% confidence intervals. 
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Figure S12. Leave-one-out analysis testing the association between general brain measures and MDD diagnosis reported by children. The x-axes 

represent standardised effect sizes. The y-axes represent the analysis leaving the given site out. The green dots represent the effect sizes by 

using the whole sample. The error bars represent 95% confidence intervals. 
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Figure S13. Associations between MDD, depressive symptoms and general measures of brain structures, controlling for MRI manufacturer. X-axes represent standardised 

effect sizes with error bars represent 95% confidence intervals, and y-axes represent each general measure of brain structure. Panel a shows the results for MDD/depressive 

symptoms reported by caregivers on children, and panel b shows the results for symptoms reported by children themselves. 
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Figure S14. Correlations of effect sizes and p-values between the main model (not controlling for MRI manufacturer) and the secondary model 

controlling for MRI manufacturer. X-axes represent statistics of the main model and the Y-axes represent statistics of the secondary model. The 

left panel shows the correlation of standardised effect sizes (regression coefficient/Cohen’s d depending on which independent variable was 

used – MDD/depressive symptoms), and the right panel shows the correlation of p-values. In the right panel, the grey dashed line shows the 

threshold of nominal significance (p < 0.05). 
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Figure S15. Associations between MDD, depressive symptoms and general measures of brain structures, controlling for medication. X-axes represent standardised effect 

sizes with error bars representing 95% confidence intervals, and y-axes represent each general measure of brain structure. Panel a shows the results for MDD/depressive 

symptoms reported by caregivers on children, and panel b shows the results for symptoms reported by children themselves. 
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Figure S16. Correlations of effect sizes and p-values between the main model (not controlling for medication) and the secondary model 

controlling for medication. X-axes represent statistics of the main model and the Y-axes represent statistics of the secondary model. The left 

panel shows the correlation of standardised effect sizes (regression coefficient/Cohen’s d depending on which independent variable was used – 

MDD/depressive symptoms), and the right panel shows the correlation of p-values. In the right panel, the grey dashed line shows the threshold 

of nominal significance (p < 0.05). 
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Figure S17. Associations between the average rating between caregiver and child reports of depressive symptoms and general measures of brain 

structures. X-axes represent standardised effect sizes, and y-axes represent each general measure of brain structure. Error bars represent 95% 

confidence intervals. Significant associations are highlighted with an asterisk.  
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Figure S18. P-value plots for associations between average of caregiver and child report of severity of MDD and measures for single brain regions. 

X axes represent measures for brain structural measures, and y axes represent -log10 transformed p-values. Solid dots represent significant 

associations after FDR-correction. Pink dashed line represents nominally significance threshold. Those regions with the label ‘(+)’ were new 

associations found with average DS but not with parent-reported DS. Regions with the label ‘(-)’ were associations that were found with parent-

reported DS but not with average DS. 
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Figure S19. Associations between average of child and caregiver reports of depressive symptoms and regional measures of brain structures. 

Regional brain measures that were found significantly associated with caregiver report of depressive symptoms were chosen for this analysis 

and thus multiple comparison correction was conducted withing the tested associations only. X-axes represent standardised effect sizes, and y-

axes represent each regional brain structure. Error bars represent 95% confidence intervals. Significant associations are highlighted with an 

asterisk. 
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Figure S20. Reporter difference for each KSADS item. The X-axis represents the proportion of types of reporter comparisons (Caregiver > Child: caregiver=1 
and child=0; Child > Caregiver: child=1 and caregiver=0; Caregiver = Child: caregiver=child=1 or caregiver=child=0). The y-axis represents each KSADS item 
used for deriving severity of MDD. 
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Figure S21. Correlations of effect sizes and p-values of using the subsample (N=3733) with post-processing QC data available and for those who 

passed QC in this subsample (N=3509). X-axes represent statistics of the main model and the Y-axes represent statistics of the secondary model. 

The left panel shows the correlation of standardised effect sizes (regression coefficient/Cohen’s d depending on which independent variable was 

used – MDD/depressive symptoms), and the right panel shows the correlation of p-values. In the right panel, the grey dashed line shows the 

threshold of nominal significance (p < 0.05). 
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Figure S22. Associations between the absolute difference between caregiver and child reports of depressive symptoms and general measures of 

brain structures. X-axes represent standardised effect sizes, and y-axes represent each general measure of brain structure. Error bars represent 

95% confidence intervals. Significant associations are highlighted with an asterisk.  
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Figure S23. Associations between the absolute difference between child and caregiver reports of depressive symptoms regional measures of 

brain structures. Regional brain measures that were found significantly associated with caregiver report of depressive symptoms were chosen 

for this analysis. X-axes represent standardised effect sizes, and y-axes represent each regional brain structure. Error bars represent 95% 

confidence intervals. Significant associations are highlighted with an asterisk.  
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Figure S24. Distribution of CBCL-measured DS under each MDD severity category classified using KSADS (both KSADS and CBCL measures were 

reported by caregivers). X axis represents CBCL-measured DS. Each row’s y axis represents distribution density. The vertical lines in each 

distribution represents the mean of the given distribution. 
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Figure S25. Associations between CBCL DSM-5-oriented score of depression and general measures of brain structures. X-axes represent 

standardised effect sizes, and y-axes represent each general measure of brain structure. Error bars represent 95% confidence intervals. 

Significant associations are highlighted with an asterisk. 
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Figure S26. P-value plots for associations between depressive symptoms assessed by CBCL (the Child Behaviour Checklist, reported by caregivers) and measures for single 

brain regions. X axes represent measures for brain structural measures, and y axes represent -log10 transformed p-values. Panel (a) shows the results for depressive 

symptoms reported by caregivers on children, and panel (b) shows the results for symptoms reported by children themselves. Solid dots represent variables associated with 

depressive symptoms after FDR-correction. For clarity, threshold for significance after FDR-correction is shown as the pink dashed lines. 
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Figure S27. Associations between the caregiver report and general measures of brain structures after accounting for comorbidity of Bipolar I, 

Bipolar II, ADHD, Psychosis and Conduct disorder. X-axes represent standardised effect sizes, and y-axes represent each general measure of brain 

structure. Error bars represent 95% confidence intervals. Significant associations are highlighted with an asterisk. 
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Figure S28. Correlations of effect sizes and p-values for the main model and a secondary model accounting for comorbidity of Bipolar I, Bipolar 

II, ADHD, Psychosis and Conduct disorder. X-axes represent statistics of the main model and the Y-axes represent statistics of the secondary 

model. The left panel shows the correlation of standardised effect sizes (regression coefficient/Cohen’s d depending on which independent 

variable was used – MDD/depressive symptoms), and the right panel shows the correlation of p-values. In the right panel, the grey dashed line 

shows the threshold of nominal significance (p < 0.05). 
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Supplementary Data 1. Results for associations between MDD/Depressive symptoms and 

global neuroimaging measures. MDD.caregiver = MDD based on reports by caregivers, 

Depressive symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = 

MDD based on reports by children and Depressive symptoms.y = depressive symptoms based 

on reports by children. 

Supplementary Data 2. Results for associations between MDD/Depressive symptoms and 

cortical thickness. MDD.caregiver = MDD based on reports by caregivers, Depressive 

symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = MDD based 

on reports by children and Depressive symptoms.y = depressive symptoms based on reports 

by children. 

Supplementary Data 3. Results for associations between MDD/Depressive symptoms and 

cortical surface area. MDD.caregiver = MDD based on reports by caregivers, Depressive 

symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = MDD based 

on reports by children and Depressive symptoms.y = depressive symptoms based on reports 

by children. 

Supplementary Data 4. Results for associations between MDD/Depressive symptoms and 

cortical sulcal depth. MDD.caregiver = MDD based on reports by caregivers, Depressive 

symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = MDD based 

on reports by children and Depressive symptoms.y = depressive symptoms based on reports 

by children. 

Supplementary Data 5. Results for associations between MDD/Depressive symptoms and 

cortical volume. MDD.caregiver = MDD based on reports by caregivers, Depressive 

symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = MDD based 

on reports by children and Depressive symptoms.y = depressive symptoms based on reports 

by children. 

Supplementary Data 6. Results for associations between MDD/Depressive symptoms and 

white-matter fractional anisotropy. MDD.caregiver = MDD based on reports by caregivers, 

Depressive symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = 

MDD based on reports by children and Depressive symptoms.y = depressive symptoms based 

on reports by children. 
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Supplementary Data 7. Results for associations between MDD/Depressive symptoms and 

white-matter mean diffusivity. MDD.caregiver = MDD based on reports by caregivers, 

Depressive symptoms.p = depressive symptoms based on reports by caregivers, MDD.child = 

MDD based on reports by children and Depressive symptoms.y = depressive symptoms based 

on reports by children.  
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Appendix 2: Supplementary Information for Chapter 4  

 

The role of brain structure in the association between pubertal timing 

and depression risk in an early adolescent sample (the ABCD Study®): 

A registered report 

 

 

MacSweeney et al.  
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Main analyses 

 

Hypothesis 1 — Earlier pubertal timing is associated with later depression symptoms  

 

The complete model output, including incidence rate ratios, standard errors, and p-values for 

the predictor and all covariates across the base and fully adjusted models are reported in 

Table S1 (females) and Table S2 (males).  

 

Females: Effect of pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.821 0.032 <0.001 0.636 0.172 0.093 

Pubertal timing 1.313 0.041 <0.001 1.220 0.040 <0.001 

Age 1.111 0.034 0.001 1.097 0.034 0.002 

Race: Black 0.630 0.073 <0.001 0.723 0.088 0.007 

Race: Asian 0.854 0.187 0.471 1.032 0.222 0.884 

Race: AIAN/NHPI 0.961 0.360 0.915 0.884 0.328 0.739 

Race: Other 1.299 0.213 0.110 1.497 0.246 0.014 

Race: Mixed 1.217 0.116 0.040 1.138 0.107 0.169 

BMI 
   

1.105 0.036 0.002 

Household income: 

$5,000-$11,999 

   
1.094 0.371 0.792 

Household income: 

$12,000-$15,999 

   
0.850 0.297 0.642 
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Household income: 

$16,000-$24,999 

   
1.379 0.430 0.303 

Household income: 

$25,000-$34,999 

   
1.107 0.331 0.735 

Household income: 

$35,000-$49,999 

   
1.339 0.383 0.307 

Household income: 

$50,000-$74,999 

   
1.300 0.364 0.349 

Household income: 

$75,000-$99,999 

   
1.245 0.349 0.433 

Household income: 

$100,000-$199,999 

   
1.338 0.367 0.288 

Household income: 

>$200,000 

   
1.255 0.358 0.427 

Parent depressive 

symptoms 

   
1.500 0.046 <0.001 

Random Effects 

σ2 0.81 0.81 

τ00 1.29 rel_family_id 1.12 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2155 rel_family_id 2105 rel_family_id 

Observations 2491 2426 

Marginal R2 / Conditional R2 0.111 / NA 0.252 / NA 

Table S1 — Females: Base and Fully adjusted models with associated statistics for effect of earlier pubertal timing 
on later depressive symptoms. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American 
Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 
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Males: Effect of pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.738 0.027 <0.001 0.864 0.178 0.478 

Pubertal timing 1.088 0.033 0.006 1.045 0.032 0.151 

Age 1.041 0.031 0.167 1.025 0.029 0.397 

Race: Black 0.685 0.083 0.002 0.671 0.083 0.001 

Race: Asian 0.586 0.134 0.019 0.735 0.167 0.175 

Race: AIAN/NHPI 0.950 0.419 0.908 1.046 0.443 0.915 

Race: Other 1.096 0.186 0.590 1.036 0.173 0.834 

Race: Mixed 1.165 0.118 0.130 1.087 0.106 0.391 

BMI 
   

1.126 0.033 <0.001 

Household income: 

$5,000-$11,999 

   
0.677 0.198 0.182 

Household income: 

$12,000-$15,999 

   
0.722 0.232 0.311 

Household income: 

$16,000-$24,999 

   
1.051 0.257 0.838 

Household income: 

$25,000-$34,999 

   
0.909 0.218 0.692 

Household income: 

$35,000-$49,999 

   
0.989 0.222 0.962 

Household income: 

$50,000-$74,999 

   
0.857 0.186 0.476 
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Household income: 

$75,000-$99,999 

   
0.839 0.182 0.419 

Household income: 

$100,000-$199,999 

   
0.819 0.174 0.347 

Household income: 

>$200,000 

   
0.840 0.189 0.436 

Parent depressive 

symptoms 

   
1.562 0.045 <0.001 

Random Effects 

σ2 0.87 0.87 

τ00 1.28 rel_family_id 1.04 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2412 rel_family_id 2369 rel_family_id 

Observations 2752 2703 

Marginal R2 / Conditional R2 0.030 / NA 0.224 / NA 

Table S2 — Males: Base and Fully adjusted models with associated statistics for effect of earlier pubertal timing 
on later depressive symptoms. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American 
Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 
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Exploratory analyses 

 

Hypothesis 1: Gonadal and adrenal pubertal timing measures  

 

Independent models for gonadal and adrenal pubertal timing are presented in Tables S3 & S4 

for females and S5 & S6 for males. We also ran a model that included both gonadal and 

adrenal timing to examine whether one aspect of pubertal development was associated with 

youth depression above and beyond the other. These results are presented in Tables S7 

(female) and S8 (males).  

 

Females: Effect of adrenal pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.814 0.032 <0.001 0.654 0.176 0.114 

Adrenal pubertal timing 1.259 0.040 <0.001 1.179 0.038 <0.001 

Age 1.114 0.034 <0.001 1.095 0.033 0.003 

Race: Black 0.667 0.077 <0.001 0.734 0.089 0.011 

Race: Asian 0.881 0.193 0.563 1.066 0.229 0.766 

Race: AIAN/NHPI 1.023 0.382 0.951 0.900 0.333 0.775 

Race: Other 1.388 0.227 0.045 1.545 0.253 0.008 

Race: Mixed 1.248 0.119 0.020 1.151 0.108 0.133 

BMI 
   

1.131 0.036 <0.001 

Household income: 

$5,000-$11,999 

   
1.074 0.364 0.834 
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Household income: 

$12,000-$15,999 

   
0.843 0.294 0.626 

Household income: 

$16,000-$24,999 

   
1.372 0.427 0.310 

Household income: 

$25,000-$34,999 

   
1.089 0.325 0.775 

Household income: 

$35,000-$49,999 

   
1.308 0.373 0.347 

Household income: 

$50,000-$74,999 

   
1.273 0.355 0.387 

Household income: 

$75,000-$99,999 

   
1.210 0.337 0.495 

Household income: 

$100,000-$199,999 

   
1.290 0.352 0.351 

Household income: 

>$200,000 

   
1.197 0.340 0.528 

Parent depressive 

symptoms 

   
1.501 0.046 <0.001 

Random Effects 

σ2 0.81 0.81 

τ00 1.29 rel_family_id 1.11 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2155 rel_family_id 2105 rel_family_id 

Observations 2491 2426 

Marginal R2 / Conditional R2 0.092 / NA 0.246 / NA 
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Table S3 — Females: Adrenal pubertal timing and youth depression: Base and Fully adjusted models with 
associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska 
Native/Native Hawaiian and other Pacific Islander. 
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Females: Effect of gonadal pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.817 0.032 <0.001 0.628 0.170 0.085 

Gonadal pubertal timing 1.281 0.039 <0.001 1.191 0.038 <0.001 

Age 1.110 0.034 0.001 1.096 0.034 0.003 

Race: Black 0.646 0.075 <0.001 0.737 0.089 0.012 

Race: Asian 0.834 0.183 0.410 1.004 0.218 0.985 

Race: AIAN/NHPI 0.951 0.358 0.894 0.871 0.324 0.710 

Race: Other 1.267 0.209 0.150 1.467 0.242 0.020 

Race: Mixed 1.214 0.117 0.044 1.133 0.107 0.184 

BMI 
   

1.114 0.036 0.001 

Household income: 

$5,000-$11,999 

   
1.105 0.376 0.769 

Household income: 

$12,000-$15,999 

   
0.870 0.305 0.691 

Household income: 

$16,000-$24,999 

   
1.391 0.435 0.291 

Household income: 

$25,000-$34,999 

   
1.131 0.340 0.682 

Household income: 

$35,000-$49,999 

   
1.351 0.388 0.295 

Household income: 

$50,000-$74,999 

   
1.315 0.369 0.330 
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Household income: 

$75,000-$99,999 

   
1.258 0.353 0.413 

Household income: 

$100,000-$199,999 

   
1.348 0.371 0.277 

Household income: 

>$200,000 

   
1.266 0.362 0.409 

Parent depressive 

symptoms 

   
1.506 0.047 <0.001 

Random Effects 

σ2 0.81 0.81 

τ00 1.30 rel_family_id 1.13 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2155 rel_family_id 2105 rel_family_id 

Observations 2491 2426 

Marginal R2 / Conditional R2 0.099 / NA 0.247 / NA 

 

Table S4 — Females: Gonadal pubertal timing and youth depression: Base and Fully adjusted models with 
associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska 
Native/Native Hawaiian and other Pacific Islander. 

  

Males: Effect of adrenal pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.737 0.027 <0.001 0.848 0.176 0.425 

Adrenal pubertal timing 1.105 0.033 0.001 1.055 0.032 0.078 

Age 1.042 0.031 0.162 1.025 0.029 0.388 
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Race: Black 0.682 0.082 0.002 0.670 0.083 0.001 

Race: Asian 0.591 0.135 0.021 0.737 0.168 0.180 

Race: AIAN/NHPI 0.966 0.427 0.939 1.051 0.446 0.907 

Race: Other 1.110 0.188 0.538 1.043 0.174 0.802 

Race: Mixed 1.164 0.118 0.134 1.087 0.106 0.392 

BMI 
   

1.125 0.033 <0.001 

Household income: 

$5,000-$11,999 

   
0.695 0.203 0.214 

Household income: 

$12,000-$15,999 

   
0.733 0.236 0.333 

Household income: 

$16,000-$24,999 

   
1.082 0.265 0.747 

Household income: 

$25,000-$34,999 

   
0.924 0.222 0.741 

Household income: 

$35,000-$49,999 

   
1.010 0.227 0.966 

Household income: 

$50,000-$74,999 

   
0.872 0.190 0.530 

Household income: 

$75,000-$99,999 

   
0.855 0.186 0.473 

Household income: 

$100,000-$199,999 

   
0.833 0.177 0.391 

Household income: 

>$200,000 

   
0.854 0.192 0.482 

Parent depressive 

symptoms 

   
1.560 0.045 <0.001 
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Random Effects 

σ2 0.87 0.87 

τ00 1.28 rel_family_id 1.04 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

ICC   0.54 

N 21 site_id_y1 21 site_id_y1 

 
2412 rel_family_id 2369 rel_family_id 

Observations 2752 2703 

Marginal R2 / Conditional R2 0.033 / NA 0.116 / 0.597 

 

Table S5 — Males: Adrenal pubertal timing and youth depression: Base and Fully adjusted models with associated 
statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska Native/Native 
Hawaiian and other Pacific Islander. 

 

Males: Effect of gonadal pubertal timing on youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.734 0.027 <0.001 0.862 0.178 0.472 

Gonadal pubertal timing 1.044 0.032 0.154 1.021 0.031 0.487 

Age 1.042 0.031 0.165 1.024 0.029 0.407 

Race: Black 0.714 0.086 0.005 0.684 0.084 0.002 

Race: Asian 0.581 0.133 0.018 0.732 0.167 0.171 

Race: AIAN/NHPI 0.950 0.419 0.908 1.030 0.436 0.945 

Race: Other 1.107 0.188 0.549 1.041 0.174 0.810 

Race: Mixed 1.177 0.119 0.106 1.094 0.106 0.357 

BMI 
   

1.133 0.033 <0.001 
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Household income: 

$5,000-$11,999 

   
0.680 0.199 0.187 

Household income: 

$12,000-$15,999 

   
0.723 0.232 0.312 

Household income: 

$16,000-$24,999 

   
1.051 0.256 0.839 

Household income: 

$25,000-$34,999 

   
0.913 0.219 0.703 

Household income: 

$35,000-$49,999 

   
0.990 0.222 0.964 

Household income: 

$50,000-$74,999 

   
0.858 0.186 0.479 

Household income: 

$75,000-$99,999 

   
0.838 0.182 0.417 

Household income: 

$100,000-$199,999 

   
0.818 0.173 0.342 

Household income: 

>$200,000 

   
0.838 0.188 0.431 

Parent depressive 

symptoms 

   
1.563 0.045 <0.001 

Random Effects 

σ2 0.87 0.87 

τ00 1.28 rel_family_id 1.04 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2412 rel_family_id 2369 rel_family_id 

Observations 2752 2703 
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Marginal R2 / Conditional R2 0.025 / NA 0.223 / NA 

 

Table S6 — Males: Gonadal pubertal timing and youth depression: Base and Fully adjusted models with 
associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska 
Native/Native Hawaiian and other Pacific Islander. 

 

 

Females: Effect of gonadal pubertal timing on youth depression, controlling for adrenal pubertal 

timing 

  Base 

Predictors IRR SE P-Value 

(Intercept) 0.821 0.032 <0.001 

Gonadal pubertal timing 1.194 0.044 <0.001 

Adrenal pubertal timing 1.132 0.044 0.001 

Age 1.111 0.034 0.001 

Race: Black 0.629 0.073 <0.001 

Race: Asian 0.851 0.186 0.463 

Race: AIAN/NHPI 0.973 0.364 0.941 

Race: Other 1.294 0.212 0.117 

Race: Mixed 1.216 0.116 0.041 

Random Effects 

σ2 0.81 

τ00 rel_family_id 1.29 

τ00 site_id_y1 0.00 

ICC 0.61 

N site_id_y1 21 

N rel_family_id 2155 
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Observations 2491 

Marginal R2 / Conditional R2 0.046 / 0.632 

 

Table S7 — Females: Effect of gonadal pubertal timing on youth depression controlling for adrenal pubertal 
timing. Base model with associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = 
American Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 

 

Males: Effect of gonadal timing on youth depression, controlling for adrenal pubertal 

timing 

  Base 

Predictors IRR SE P-Value 

(Intercept) 0.737 0.027 <0.001 

Gonadal pubertal timing 0.994 0.034 0.850 

Adrenal pubertal timing 1.109 0.038 0.003 

Age 1.042 0.031 0.161 

Race: Black 0.684 0.083 0.002 

Race: Asian 0.591 0.135 0.022 

Race: AIAN/NHPI 0.959 0.425 0.925 

Race: Other 1.113 0.189 0.528 

Race: Mixed 1.165 0.118 0.132 

Random Effects 

σ2 0.87 

τ00 rel_family_id 1.28 

τ00 site_id_y1 0.00 

N site_id_y1 21 

N rel_family_id 2412 



9 | Appendices 

 275 

Observations 2752 

Marginal R2 / Conditional R2 0.033 / NA 

 

Table S8 — Males: Effect of gonadal pubertal timing on youth depression controlling for adrenal pubertal timing. 
Base model with associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American 
Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 
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Sensitivity Analyses  

 

Hypothesis 1: Multiple imputation of missing outcome and covariate data 

 

For H1, multiple imputation by chained equations (MICE) was undertaken using the “mice” 

package in R (Buuren & Groothuis-Oudshoorn, 2011) to impute missing data for youth 

depression at year 3 (outcome), BMI at year 1 and parental mood at year 2. In our final sample 

(Females: N= 2533; Males: N = 2792) which included participants with complete puberty data 

and who had attended the year 3 follow-up appointment, there was no missing data for site, 

age, sex, or the population weighting score variables. We did not impute data for 

race/ethnicity so participants with missing data (N = 30 (females); N = 26 (males)) for this 

variable were not included in the imputation analysis. Further, we did not impute household 

income as this data was only collected at baseline and we were unable to find a suitable 

auxiliary variable (e.g., highest parental education) as participants with missing household 

income data were also missing parental education data.  

 

Auxiliary variables were only included if they predicted the variable being imputed or 

missingness in this variable (to reduce the bias of variables being “missing not at random”) or 

if they had <40% missing data. The auxiliary variables included were: youth depression at 

baseline, year 1 and year 2 (measured via the CBCL withdrawn/depressed subscale); youth 

anxiety at baseline, year 1, year 2, and year 3; parent depression at baseline; and BMI at 

baseline. One hundred imputed datasets were created. Effect sizes from each imputed 

dataset were then pooled using Rubin’s rule. We note that missingness in our final sample 

was very low in both our base models (females = 42/2533 (1.66%); males = 40/2792 (1.34%)) 

and fully adjusted models (females = 107/2533 (4.22%); males = 89/2792 (3.19%).  

 

Similar effect sizes were found when missing data was imputed and pooled for both females 

and males, as shown in Table S9 and S10 respectively. 
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Females: Pooled effect sizes for the association between pubertal timing on youth depression 

using MICE 

  Base Full 

Predictors Beta Estimate SE P-Value Beta Estimate SE P-Value 

(Intercept) -0.193 0.039 <0.001 -0.448 0.258 0.083 

Pubertal timing 0.273 0.031 <0.001 0.196 0.032 <0.001 

Age 0.106 0.031 0.001 0.092 0.030 0.002 

Race: Black -0.463 0.116 <0.001 -0.343 0.118 0.004 

Race: Asian -0.162 0.215 0.45 0.043 0.207 0.835 

Race: AIAN/NHPI -0.046 0.375 0.902 -0.188 0.367 0.609 

Race: Other 0.213 0.162 0.189 0.298 0.160 0.062 

Race: Mixed 0.186 0.096 0.052 0.109 0.093 0.241 

BMI 
   

0.101 0.032 0.001 

Household income: 

$5,000-$11,999 

   

0.117 0.325 0.719 

Household income: 

$12,000-$15,999 

   

-0.108 0.327 0.742 

Household income: 

$16,000-$24,999 

   

0.345 0.299 0.248 

Household income: 

$25,000-$34,999 

   

0.172 0.286 0.548 

Household income: 

$35,000-$49,999 

   

0.286 0.274 0.297 

Household income: 

$50,000-$74,999 

   

0.257 0.268 0.337 
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Household income: 

$75,000-$99,999 

   

0.225 0.268 0.402 

Household income: 

$100,000-$199,999 

   

0.290 0.262 0.269 

Household income: 

>$200,000 

   

0.198 0.274 0.470 

Parent depressive 

symptoms 

   

0.408 0.030 <0.001 

Table S9 — Females: Effect of pubertal timing on youth depression with imputed missing data. Base and fully 
adjusted models with associated statistics (pooled effect sizes using MICE). Note: AIAN/NHPI = AIAN/NHPI = 
American Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 

Males: Pooled effect sizes for the association between pubertal timing on youth depression 

using MICE 

  Base Full 

Predictors Beta Estimate SE P-Value Beta Estimate SE P-Value 

(Intercept) -0.302 0.037 <0.001 -0.220 0.202 0.276 

Pubertal timing 0.087 0.030 0.004 0.048 0.030 0.111 

Age 0.041 0.029 0.166 0.022 0.028 0.430 

Race: Black -0.378 0.121 0.002 -0.377 0.121 0.002 

Race: Asian -0.547 0.228 0.017 -0.272 0.219 0.215 

Race: AIAN/NHPI -0.104 0.437 0.812 -0.007 0.420 0.987 

Race: Other 0.073 0.169 0.667 0.048 0.164 0.771 

Race: Mixed 0.151 0.101 0.134 0.074 0.096 0.443 

BMI 
   

0.119 0.029 <0.001 

Household income: 

$5,000-$11,999 

   

-0.441 0.287 0.125 

Household income: 

$12,000-$15,999 

   

-0.318 0.317 0.316 
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Household income: 

$16,000-$24,999 

   

0.140 0.240 0.559 

Household income: 

$25,000-$34,999 

   

0.003 0.234 0.989 

Household income: 

$35,000-$49,999 

   

0.072 0.220 0.744 

Household income: 

$50,000-$74,999 

   

-0.084 0.213 0.693 

Household income: 

$75,000-$99,999 

   

-0.100 0.213 0.639 

Household income: 

$100,000-$199,999 

   

-0.118 0.208 0.571 

Household income: 

>$200,000 

   

-0.094 0.220 0.668 

Parent depressive 

symptoms 

   

0.442 0.028 <0.001 

Table S10 — Males: Effect of pubertal timing on youth depression with imputed missing data. Base and fully 
adjusted models with associated statistics (pooled effect sizes using MICE). Note: AIAN/NHPI = AIAN/NHPI = 
American Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 

 

Hypothesis 1: Controlling for earlier youth depression 

We examined the association between earlier pubertal timing and the potential change (or 

rather worsening) of depressive symptoms between timepoints (i.e., Year 1 and Year 3) by 

including Year 1 youth depressive symptoms as an additional covariate in our base and fully 

adjusted models. 

 

Females: Effect of pubertal timing on youth depression controlling for earlier youth depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 1.000 0.034 1.000 0.635 0.152 0.058 
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Pubertal timing 1.173 0.032 <0.001 1.173 0.034 <0.001 

Age 1.064 0.029 0.021 1.076 0.030 0.009 

Race: Black 0.761 0.076 0.006 0.809 0.087 0.050 

Race: Asian 0.950 0.178 0.783 1.015 0.200 0.938 

Race: AIAN/NHPI 0.971 0.313 0.928 1.000 0.336 0.999 

Race: Other 1.047 0.149 0.745 1.153 0.172 0.340 

Race: Mixed 1.089 0.090 0.300 1.061 0.090 0.487 

Youth depressive 

symptoms(Y 1) 

1.613 0.036 <0.001 1.581 0.038 <0.001 

Household income: 

$5,000-$11,999 

   
1.479 0.440 0.187 

Household income: 

$12,000-$15,999 

   
1.139 0.349 0.671 

Household income: 

$16,000-$24,999 

   
1.501 0.415 0.141 

Household income: 

$25,000-$34,999 

   
1.035 0.275 0.898 

Household income: 

$35,000-$49,999 

   
1.382 0.351 0.202 

Household income: 

$50,000-$74,999 

   
1.328 0.330 0.252 

Household income: 

$75,000-$99,999 

   
1.257 0.312 0.357 

Household income: 

$100,000-$199,999 

   
1.367 0.332 0.199 

Household income: 

>$200,000 

   
1.366 0.346 0.219 



9 | Appendices 

 281 

Parent depressive 

symptoms 

   
1.287 0.037 <0.001 

Random Effects 

σ2 0.81 0.81 

τ00 0.80 rel_family_id 0.80 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 

 
2155 rel_family_id 2137 rel_family_id 

Observations 2491 2469 

Marginal R2 / Conditional R2 0.264 / NA 0.337 / NA 

 

Table S11— Females: Effect of pubertal timing on youth depression controlling for earlier youth depression (at 
Year 1). Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska Native/Native 
Hawaiian and other Pacific Islander. 

 

Males: Effect of pubertal timing on youth depression controlling for earlier youth 

depression 

  Base Full 

Predictors IRR SE P-Value IRR SE P-Value 

(Intercept) 0.527 0.020 <0.001 0.531 0.096 <0.001 

Pubertal timing 1.052 0.028 0.057 1.053 0.028 0.056 

Age 1.003 0.026 0.902 0.998 0.026 0.944 

Race: Black 0.751 0.078 0.006 0.797 0.087 0.037 

Race: Asian 0.750 0.149 0.147 0.830 0.168 0.357 

Race: AIAN/NHPI 1.039 0.382 0.916 1.179 0.434 0.655 

Race: Other 1.018 0.148 0.905 1.060 0.156 0.692 

Race: Mixed 1.131 0.097 0.152 1.098 0.094 0.274 
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Youth depressive 

symptoms (Y 1) 

1.394 0.016 <0.001 1.348 0.017 <0.001 

Household income: 

$5,000-$11,999 

   
0.815 0.207 0.421 

Household income: 

$12,000-$15,999 

   
0.732 0.208 0.273 

Household income: 

$16,000-$24,999 

   
1.017 0.217 0.936 

Household income: 

$25,000-$34,999 

   
1.014 0.211 0.945 

Household income: 

$35,000-$49,999 

   
1.176 0.229 0.407 

Household income: 

$50,000-$74,999 

   
0.962 0.181 0.836 

Household income: 

$75,000-$99,999 

   
0.994 0.188 0.976 

Household income: 

$100,000-$199,999 

   
1.039 0.191 0.836 

Household income: 

>$200,000 

   
1.025 0.200 0.901 

Parent depressive 

symptoms 

   
1.273 0.033 <0.001 

Random Effects 

σ2 0.87 0.87 

τ00 0.70 rel_family_id 0.65 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 

N 21 site_id_y1 21 site_id_y1 
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2412 rel_family_id 2393 rel_family_id 

Observations 2752 2733 

Marginal R2 / Conditional R2 0.291 / NA 0.331 / NA 

 

Table S12— Males: Effect of pubertal timing on youth depression controlling for earlier youth depression (at Year 
1). Note: IRR = incidence rate ratio. AIAN/NHPI = AIAN/NHPI = American Indian/Alaska Native/Native Hawaiian 
and other Pacific Islander. 
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Hypothesis 1: Population weight raked propensity score  

 

For H1, we also compared models with and without a population weighting score included as 

a weight in our generalised linear mixed model in Table S13 (females) and Table S14 (males). 

The inclusion of a population weighting score seemed to inflate the effect sizes and standard 

errors of minority race/ethnicity groups (e.g., AIAN/NHPI), which may be due to the small 

number of individuals (0.85% (females)/0.57% (males)) who reported this as their 

race/ethnicity in ABCD. Given that our main research questions did not examine race 

interaction effects, we decided to remove the population weighting score from our main 

analyses and report it as sensitivity analyses instead.  

 

Females: Effect of pubertal timing on youth depression 

  Base Full Full (weighted) 

Predictors IRR SE P-Value IRR SE P-Value IRR SE P-Value 

(Intercept) 0.821 0.032 <0.001 0.636 0.172 0.093 0.002 0.002 <0.001 

Pubertal 

timing 

1.313 0.041 <0.001 1.220 0.040 <0.001 1.217 0.004 <0.001 

Age 1.111 0.034 0.001 1.097 0.034 0.002 1.222 0.004 <0.001 

Race: Black 0.630 0.073 <0.001 0.723 0.088 0.007 0.257 0.138 0.011 

Race: Asian 0.854 0.187 0.471 1.032 0.222 0.884 0.942 0.914 0.951 

Race: 

AIAN/NHPI 

0.961 0.360 0.915 0.884 0.328 0.739 299.294 175.494 <0.001 

Race: Other 1.299 0.213 0.110 1.497 0.246 0.014 3.100 0.121 <0.001 

Race: Mixed 1.217 0.116 0.040 1.138 0.107 0.169 1.598 0.024 <0.001 

BMI 
   

1.105 0.036 0.002 1.238 0.004 <0.001 

Household 

income: 

   
1.094 0.371 0.792 6.451 9.889 0.224 
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$5,000-

$11,999 

Household 

income: 

$12,000-

$15,999 

   
0.850 0.297 0.642 4.560 5.604 0.217 

Household 

income: 

$16,000-

$24,999 

   
1.379 0.430 0.303 4.523 5.558 0.219 

Household 

income: 

$25,000-

$34,999 

   
1.107 0.331 0.735 0.069 0.087 0.033 

Household 

income: 

$35,000-

$49,999 

   
1.339 0.383 0.307 8.615 10.584 0.080 

Household 

income: 

$50,000-

$74,999 

   
1.300 0.364 0.349 36.266 44.236 0.003 

Household 

income: 

$75,000-

$99,999 

   
1.245 0.349 0.433 0.408 0.498 0.462 

Household 

income: 

$100,000-

$199,999 

   
1.338 0.367 0.288 3.847 4.667 0.267 

Household 

income: 

>$200,000 

   
1.255 0.358 0.427 1.976 2.491 0.589 
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Parent 

depressive 

symptoms 

   
1.500 0.046 <0.001 1.144 0.016 <0.001 

Random Effects 

σ2 0.81 0.81 4.76 

τ00 1.29 rel_family_id 1.12 rel_family_id 43.19 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 0.00 site_id_y1 

ICC     0.90 

N 21 site_id_y1 21 site_id_y1 21 site_id_y1 

 
2155 rel_family_id 2105 rel_family_id 2105 rel_family_id 

Observations 2491 2426 2426 

Marginal R2 / 

Conditional 

R2 

0.111 / NA 0.252 / NA 0.063 / 0.907 

Table S13 — Females: Base model, fully adjusted model and fully adjusted model with population propensity 
score weight included as a weight in the model with associated statistics. Note: IRR = incidence rate ratio. 
AIAN/NHPI = AIAN/NHPI = American Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 

 

Males: Effect of pubertal timing on youth depression 

  Base Full Full (weighted) 

Predictors IRR SE P-Value IRR SE P-Value IRR SE P-Value 

(Intercept) 0.738 0.027 <0.001 0.864 0.178 0.478 0.003 0.003 <0.001 

Pubertal timing 1.088 0.033 0.006 1.045 0.032 0.151 1.011 0.003 <0.001 

Age 1.041 0.031 0.167 1.025 0.029 0.397 1.061 0.003 <0.001 

Race: Black 0.685 0.083 0.002 0.671 0.083 0.001 0.518 0.288 0.237 

Race: Asian 0.586 0.134 0.019 0.735 0.167 0.175 0.012 0.012 <0.001 

Race: AIAN/NHPI 0.950 0.419 0.908 1.046 0.443 0.915 0.012 0.030 0.074 

Race: Other 1.096 0.186 0.590 1.036 0.173 0.834 1.599 0.074 <0.001 
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Race: Mixed 1.165 0.118 0.130 1.087 0.106 0.391 87.971 19.418 <0.001 

BMI 
   

1.126 0.033 <0.001 1.245 0.004 <0.001 

Household income: 

$5,000-$11,999 

   
0.677 0.198 0.182 0.055 0.077 0.040 

Household income: 

$12,000-$15,999 

   
0.722 0.232 0.311 0.121 0.188 0.173 

Household income: 

$16,000-$24,999 

   
1.051 0.257 0.838 1.760 1.816 0.584 

Household income: 

$25,000-$34,999 

   
0.909 0.218 0.692 1.695 1.748 0.609 

Household income: 

$35,000-$49,999 

   
0.989 0.222 0.962 2.744 2.830 0.328 

Household income: 

$50,000-$74,999 

   
0.857 0.186 0.476 0.101 0.104 0.026 

Household income: 

$75,000-$99,999 

   
0.839 0.182 0.419 6.749 6.927 0.063 

Household income: 

$100,000-$199,999 

   
0.819 0.174 0.347 0.624 0.640 0.645 

Household income: 

>$200,000 

   
0.840 0.189 0.436 0.970 1.047 0.978 

Parent depressive 

symptoms 

   
1.562 0.045 <0.001 1.302 0.014 <0.001 

Random Effects 

σ2 0.87 0.87 5.53 

τ00 1.28 rel_family_id 1.04 rel_family_id 43.82 rel_family_id 

 
0.00 site_id_y1 0.00 site_id_y1 0.28 site_id_y1 

ICC     0.89 

N 21 site_id_y1 21 site_id_y1 21 site_id_y1 
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2412 rel_family_id 2369 rel_family_id 2369 rel_family_id 

Observations 2752 2703 2703 

Marginal R2 / 

Conditional R2 

0.030 / NA 0.224 / NA 0.089 / 0.899 

Table S14 — Males: Base model, fully adjusted model and fully adjusted model with population propensity score 
weight included as a weight in the model with associated statistics. Note: IRR = incidence rate ratio. AIAN/NHPI 
= AIAN/NHPI = American Indian/Alaska Native/Native Hawaiian and other Pacific Islander. 
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Appendix 3: Supplementary Information for Chapters 6 & 7  

 

Chapter 6: Irritability in Adolescent Depression — Pilot Study Methods 

 

Chapter 7: Exploring Dynamic Functional Brain Networks in Adolescent 

Depression Using a Co-produced Novel Irritability Task 
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Irritability study: Recruitment poster 
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Irritability study: Participant information sheet 

  

 

 

 

Title of project: Development of novel neuroimaging markers for the 

detection of adolescent depression 

 

Information Sheet for participants 

 

You are invited to take part in a research study. To help you decide whether or not to take part, 

it is important for you to understand why the research is being done and what it will involve. 

Please take time to read the following information carefully. Talk to others about the study if 

you wish. Contact us if there is anything that is not clear, or if you would like more information. 

Take time to decide whether or not you wish to take part.  

 

What is the study about? 

Major Depressive Disorder (MDD) is among the most prevalent of all psychiatric conditions, 

and often leads to difficulties in personal, familial, and social life. Depression in half of all 

adults has a starting point in adolescence, signposting this period as critical for the origin and 

formation of neurobiological features of the condition. Numerous brain processes may be 

involved in different thinking styles, many of which have not yet been identified. It is therefore 

important to first identify differences in thinking styles and brain activation and how they may 

form part of the picture of risk. This study will therefore allow us to observe what happens 

within the brain while completing tasks assessing thinking and cognition, allowing for a better 

understanding of neurobiological features of these actions. 

 

Why have I been invited to take part? 

You have been invited to take part in this research because you have previously agreed to be 

re-contacted for future research studies and because you have contacted us with an interest to 

take part. 

To take part in this research study, you should be aged 16-19 years and fluent in English.  
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There are certain criteria, such as diagnosis of a known developmental or genetic condition, 

that may exclude you from taking part in the study. The researchers will discuss these details 

with you before your participation. 

 

Do I have to take part? 

No, it is up to you to decide whether or not to take part. If you do decide to take part, you will 

be given this information sheet to keep and be asked to sign a consent form. If you decide to 

take part, you are still free to withdraw at any time and without giving a reason.  

 

What will happen if I take part? 

You will be contacted by e-mail to discuss the study in more detail and ask any questions you 

may have about the study. If you are happy to take part in the study, you will be sent a short 

questionnaire to determine if you are eligible to take part in the study. If you are eligible and 

are still happy to take part, you will need to sign our study consent form. 

You will be invited to an appointment to have a Magnetic Resonance Imaging (MRI) scan. An 

MRI scanner is a machine that takes pictures of your brain. At the appointment, the scanner 

will take pictures of your brain while you are carrying out a few tasks, and this will help us 

understand what is happening in the brains of people when undertaking these tasks. You will 

be in the scanner for around 60 minutes. 

Here is a picture of an MRI scanner similar to the one you will use (Credits: University of 

Edinburgh). 
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After the scan, you will be asked to complete a few further tasks that measure cognitive 

abilities. These tasks will look at your memory, attention, and mood. 

The appointment will take place at the research imaging facility of the University of Edinburgh, 

which is based at the Queen’s Medical Research Institute (QMRI) in the Royal Infirmary 

Edinburgh Campus. After this appointment, there will be no further visits required.  

The appointment would take a minimum of 120 minutes and a maximum of 150 minutes. We 

will work together to set appointment that will not clash with school or university times. 

You will be able to take as many breaks as you want should you feel tired. Refreshments will 

be provided in case you need water throughout the procedure. 

 

What are the possible disadvantages or risks associated with taking part? 

Questionnaires and cognitive measures: The questionnaires and measures involved in this 

study have previously been used in research. You will fill in questionnaires about your 

behaviour and cognition, which can sometimes make you more aware of your mood and 

difficulties. This may sometimes lead to making you feel upset. If this is the case, you may find 

it helpful to speak to your parents or general practitioner (GP).  

Additionally, if any answers on the completed questionnaires tell us something that makes us 

worried about your wellbeing or that of others, we will discuss this with you at the in-person 

assessment and advise you regarding whom to contact. With your permission, we will also give 

this information to your GP in case you need further support. 

MRI Scanning: There are virtually no risks associated with having an MRI brain scan. MRI 

does not involve any exposure to radiation. The MRI uses powerful magnets to take pictures 

of the brain, so it is very important that you have no metal on or in your body. We will check 

this very carefully with you before you go into the MRI scanner. The radiographer will be 

able to tell you whether this would prevent you from taking part in the study. 

The noise during the scan is very loud, so we will provide you with earplugs or headphones 

to make you feel comfortable. Some people also report discomfort from lying in the scanner, 

having their head movements restrained, or due to feeling claustrophobic. You will be given 

a safety button that you can press at any time if you want to stop the scan. If pressed, the 

researchers will talk to you straight away, and will immediately withdraw you from the 

scanner if requested.  

In a small number of cases, irregularities can show up in the MRI scan. Most often, these are 

slight variations from typical brain structure that have no clinical meaning. Very occasionally, 
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we find something that has a clinical meaning. In this case, we will give this information to 

your GP, who will discuss this with you and advise you regarding whom to contact for further 

assessment.  

 

What are the benefits of taking part? 

There are no direct benefits to you taking part in this study, but the results from this study will 

help us understand more about the brain processes involved in cognitive tasks which are biased 

in adolescents with depression, and might help to improve the healthcare of patients in the 

future. Your travel expenses to attend the appointment will also be covered up to a reasonable 

amount. 

 

Will I get feedback about the study? 

Individual results will not be provided to study participants routinely or on request. This is 

because it is more helpful to look at responses at a group-level rather than on an individual 

level. Summaries of any main research findings will be made available online for the general 

public at https://www.eva-edinburgh.com/ and published papers will be made available online 

at https://www.ed.ac.uk/psychiatry/research.  

 

Can I withdraw from the study if I don’t want to take part anymore? 

You can withdraw from the current study at any time without any reason. To withdraw from 

the study, you will need to inform the researchers involved. Their contact information is 

included at the end of this form. If you withdraw from the study because you don’t wish to 

continue with it, we will still use the information we have collected from you when we are 

preparing the results of the study unless you tell us that you don’t want your information to be 

included.  

 

How will my privacy be protected? 

All the information you provide for the current study is confidential and will not be shared with 

anyone outside of the research team. You will not write your name on any of the questionnaires 

or tasks, but will instead be given a non-identifiable participant ID code. All information 

collected will therefore be kept anonymous. All the information collected will be stored safely 

(in encrypted files or within the secure university network). We will review all data you have 

provided for destruction every five years, and once the study is complete only an anonymised 

https://www.eva-edinburgh.com/
https://www.ed.ac.uk/psychiatry/research
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master copy of the data will exist in archives. The findings of this study will be written up and 

may be published in academic journals or presented at conferences, but names or any other 

identifying information will never be disclosed.  

Before the appointment you will be asked your GP’s name. A clinical radiologist or a 

neurologist will review your brain scan and prepare a clinical report that will be available on 

the NHS electronic systems. Your GP may receive the routine clinical report after your MRI 

scan appointment. In the unlikely event that any irregularities show up in the MRI scan, we 

will give this information to your GP. 

 

Who is organising this research? 

The current research is funded by Wellcome Trust, and is being organised by Dr Heather 

Whalley and Dr Liana Romaniuk, both research scientists in Psychiatry; Niamh MacSweeney, 

a PhD student in Psychiatry; and Dr Stella Chan, a Clinical Psychologist. The study is 

sponsored by the University of Edinburgh. 

 

Who has reviewed the research? 

This research study has been looked at by an independent group of people called a Research 

Ethics Committee.  A favourable ethical opinion has been obtained by the ACCORD Medical 

Research Ethics Committee (AMREC). 

 

What if there is a problem? 

If you have any concerns about the study and your participation in it, please contact the 

researchers involved, whose contact information is at the end of this form, and they will do 

their best to answer your questions. You can also contact the independent contact, who is 

someone not involved with the project.  

 

What will I do now? 

If you are happy to participate in the study, please e-mail the research assistant (contact details 

below: evaimag@ed.ac.uk) to indicate your interest. You will then be sent a short questionnaire 

that will assess your eligibility to take part in the study, along with a consent form specific to 

this. Once you send this back, you will be contacted by a researcher who will let you know if 

you are the right fit for the study and provide you with more details.  

mailto:evaimag@ed.ac.uk
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If you are the right fit for the study, you will also be asked to schedule your appointment. You 

will be asked to sign the consent form at your appointment. 

Contact details  

Dr Heather Whalley 

Senior Research Fellow in Psychiatry, Centre for Clinical Brain Sciences, The University of 

Edinburgh  

Email: heather.whalley@ed.ac.uk  

Tel: 0131 537 6767  

Dr Liana Romaniuk  

Research Fellow, Division of Psychiatry, Centre for Clinical Brain Sciences, University of 

Edinburgh 

Email: liana.romaniuk@ed.ac.uk  

Tel: 0131 537 6767 

Dr Stella Chan  

Reader in Clinical Psychology, School of Health in Social Science, The University of 

Edinburgh  

Email: stella.chan@ed.ac.uk  

Tel: 0131 651 3935  

Niamh MacSweeney 

PhD Student, Division of Psychiatry, Centre for Clinical Brain Sciences, The University of 

Edinburgh 

Email: evaimag@ed.ac.uk   

Tel: 0131 537 6687 

Independent contact not involved with the project - Prof. Stephen Lawrie  

Head of the Division of Psychiatry, Centre for Clinical Brain Science, The University of 

Edinburgh  

Email: s.lawrie@ed.ac.uk  

Tel: 0131 537 6671  

Complaints 

If you wish to make a complaint about the study please contact the University of Edinburgh 

Research Governance Team: resgov@accord.scot  

Irritability study: Participant consent form 

  

mailto:heather.whalley@ed.ac.uk
mailto:liana.romaniuk@ed.ac.uk
mailto:stella.chan@ed.ac.uk
mailto:evaimag@ed.ac.uk
mailto:s.lawrie@ed.ac.uk
mailto:resgov@accord.scot
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Title of project: Development of novel neuroimaging markers for the 

detection of adolescent depression 

Consent form 
 

Participant number: 

 

Essential consent items: please note that you must consent to all of these items if you wish to 

take part.  

 

 

 

I confirm that I have read and understood the participant information sheet for the above 

research project (version 7, 23 November 2020) and the data protection sheet (15 

November 2019) and have had the opportunity to consider the information and to have my 

questions answered to my satisfaction.  

 

I have been informed of the discomforts and risks that I may experience as part of this 

study.   

 

I understand that my participation is voluntary and that I am free to withdraw from the 

study at any time without providing a reason, and without my medical care and/or legal 

rights being affected. 

 

I understand that relevant sections of data collected during the study may be looked at by 

individuals from the Sponsor (University of Edinburgh) or other regulatory authorities 

where it is relevant to my taking part in this research.  I give permission for these 

individuals to have access to my data. 

 

I understand that all data provided will be stored safely for 5 years and that after 5 years, 

this data will be reviewed for possible destruction. 

 

I agree to my General Practitioner being informed of my participation in the study.  

I understand my scans will be viewed by a doctor, and that my GP will be informed of my 
participation in the study and may be provided with a routine clinical report after the MRI 
scan appointment. 

 

I give permission for the research team to contact my GP should they be worried about 
any answers provided on the questionnaires. 

 

I agree to take part in the above research project.  

Initial in the box 

to give consent 
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Optional consent items: please note that you can take part in the study even if you don’t 

consent to these items. You may leave these items blank and discuss them with the researcher. 

 YES NO 

Optional: I give permission for the researchers to re-contact me (using 

the contact information provided) with information about possible future 

research studies. I understand that there is no obligation to take part in 

any future research studies.    

  

Optional: I agree for my brain scan to be used in future ethically-

approved studies and shared with the research community on the 

University of Edinburgh public data repository DataShare. 

  

  

Print your name clearly: ____________________________________________  

 Your signature:              ________________________________  

 Date:                              __________________  

 

Name of researcher:       ____________________________________________   

 Researcher’s signature: ________________________________  

 Date:                              __________________ 
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Irritability study: Ethics approval letter  
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Irritability task development 

As detailed in Chapter 6 of this thesis, we developed a novel fMRI task targeting irritability. 

The mean irritability rating for each of the 51 scenarios generated by the young people (N = 

61, aged 16-18 years) who co-developed our task can be found in Table S1. The 18 most highly 

rated irritating scenarios were used as stimuli in our fMRI task  

Scenario Mean irritability rating  

1. I find it irritating when I am talking to someone, and they are 
being rude to me. 

4.525 

2. I find it irritating when I see people being rude to someone else. 4.459 

3. I find it irritating when people lie. 4.328 

4. I find it irritating when people don't listen to me in a 
conversation, or talk over me. 

4.279 

5. I find it irritating when people tell me to do something, even 
though I was going to do it. 

4.279 

6. I find it irritating when my parents do not take me seriously. 4.230 

7. I find it irritating when I am being patronised. 4.230 

8. I find it irritating when I get paid child-rate pay, but I am 
expected to pay adult-rate tickets on public transport. 

4.213 

9. I find it irritating when people don't listen to me in a 
conversation, especially when I am trying to be helpful. 

4.197 

10. I find it irritating when I do not perform as well as I can in any 
task. 

4.066 

11. I find it irritating when I am expected to do things that I don't 
know how to do. 

3.984 

12. I find it irritating when I realise that my parents or adults are 
not telling me the truth about something. 

3.934 

13. I find it irritating when I am asked to do chores several times, 
even though I already said I will do them. 

3.934 

14. I find it irritating when older people say that I am acting in a 
stereotypical teenager way. 

3.934 
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15. I find it irritating when my parents listen in on my conversations 
and then become angry because they did not hear the entire 
conversation. 

3.885 

16. I find it irritating when my parents tell me to do something 
multiple times. 

3.869 

17. I find it irritating when I cannot motivate myself in a situation. 3.770 

18. I find it irritating when I panic in a situation, and I can't calm 
down easily. 

3.721 

19. I find it irritating when someone eats with their mouth open. 3.689 

20. I find it irritating when there are technical issues with services I 
use (e.g., WiFi) 

3.672 

21. I find it irritating that I am expected to know what I want to do 
in life - I am only a teenager. 

3.656 

22. I find it irritating when others touch my things. 3.590 

23. I find it irritating when my siblings take my clothes, toys, or 
belongings without asking. 

3.590 

24. I find it irritating when I am in the middle of a game or 
conversation, and people come into my room to distract or ask 
questions, as I need my privacy. 

3.574 

25. I find it irritating when my parents tell me what I should be 
studying. 

3.557 

26. I find it irritating when people say that I am always on my 
phone. 

3.541 

27. I find it irritating when my parents order me around. 3.525 

28. I find it irritating when I am being forced to socialise, especially 
when I am not in the mood to do so. 

3.508 

29. I find it irritating when I don't manage to get any studying done. 3.492 

30. I find it irritating when I am the only one of my siblings that is 
asked to do housework. 

3.459 

31. I find it irritating when I am concentrated or in a mood and 
someone comes to talk to me. 

3.426 

32. I find billionaires and wealth inequality irritating. 3.410 
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33. I find it irritating when I encounter slow walkers. 3.361 

34. I find it irritating when people don't listen to my advice. 3.328 

35. I find it irritating when I am on my bike and someone drives too 
close to me, endangering my life. 

3.246 

36. I find it irritating when people shout while they are speaking. 3.246 

37. I find it irritating when there is disruption to my daily routine. 3.213 

38. I find tedious things irritating. 3.164 

39. I find it irritating that I am expected not to react to younger 
siblings because I am the older sibling. 

3.148 

40. I find it irritating when I am put in a situation where I need to 
make awkward conversations with people. 

3.115 

41. I find it irritating when I am hungry. 3.115 

42. I find it irritating when people continually ask me questions. 3.098 

43. I find it irritating when people do not take decisions based on 
logic and fail to protect their own feelings. 

3.098 

44. I find it irritating when I am ignored by people when working at 
a restaurant and bring drinks / food over to their table. 

3.016 

45. I find it irritating when I get bored. 2.967 

46. I find it irritating when other people are late. 2.967 

47. I find heat irritating. 2.967 

48. I find it irritating when older people judge me for wearing 
ripped jeans. 

2.885 

49. I find it irritating when I am expected to do work without being 
provided with a reason. 

2.869 

50. I find housework irritating. 2.721 

51. I find it irritating when my siblings ask me to make dinner for 
them, when I am already making dinner for myself. 

2.328 

Table S2 — Mean irritability rating for 51 scenarios that were derived by young people and rated by an independent 
sample of youth (N = 61).  
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Imaging quality control and analysis 

Irritability condition quality assessment statistics from HALFpipe 

Subject Aroma noise fraction FD mean FD percentage Mean tSNR 

sub1036 0.6226 0.2180 7.3930 57.3911 

sub1034 0.6078 0.1047 0.0000 78.7679 

sub1033 0.4444 0.1052 0.0000 80.2471 

sub1032 0.5686 0.1653 1.9455 65.5935 

sub1031 0.5472 0.1566 1.5564 61.4244 

sub1030 0.6500 0.1455 1.1673 64.7302 

sub1029 0.5682 0.1052 0.0000 78.2633 

sub1028 0.7843 0.1411 1.5564 61.4103 

sub1027 0.2564 0.0783 0.0000 89.6807 

sub1026 0.4286 0.0718 0.0000 91.6286 

sub1025 0.5098 0.1321 1.1673 65.6119 

sub1024 0.4255 0.0988 0.0000 87.3443 

sub1023 0.4348 0.1324 0.0000 72.5388 

sub1022 0.5556 0.1615 1.9455 65.8956 

sub1021 0.3953 0.1066 0.0000 85.3053 

sub1019 0.6897 0.1494 2.3346 62.9730 

sub1018 0.5714 0.0741 0.0000 83.8705 

sub1017 0.4894 0.1238 0.0000 84.6500 

sub1015 0.4583 0.1507 0.3891 77.2757 

sub1014 0.6486 0.1352 0.0000 74.0896 

sub1013 0.5636 0.1962 5.4475 51.7724 

sub1012 0.4792 0.1030 0.7782 68.3823 

sub1011 0.4545 0.0959 1.5564 69.6137 

sub1007 0.5217 0.1318 0.3891 63.4936 

sub1006 0.5000 0.0906 0.0000 71.6633 

sub1004 0.4082 0.1003 0.0000 79.5157 

sub1003 0.3659 0.0789 0.0000 94.8052 

sub1002 0.4419 0.0800 0.0000 80.6975 

sub1001 0.5227 0.1089 0.3891 77.0080 

Table S2 — Irritability condition quality assessment statistics from HALFpipe. FD = Framewise displacement; tSNR 
= temporal signal-to-noise ratio. 
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Resting state condition quality assessment statistics from HALFpipe 

  

Table S3 — Resting state condition quality assessment statistics from HALFpipe. FD = Framewise displacement; 
tSNR = temporal signal-to-noise ratio. 

 

Subject Aroma noise fraction FD mean FD percentage Mean tSNR 

sub1036 0.7907 0.2147 5.8366 48.2617 

sub1034 0.5849 0.0911 0.0000 79.3496 

sub1033 0.5435 0.1051 0.0000 72.4813 

sub1032 0.4898 0.1460 0.3891 62.3415 

sub1031 0.5778 0.1354 1.1673 58.5040 

sub1030 0.5250 0.1438 0.7782 68.6001 

sub1029 0.5349 0.1127 0.0000 76.9799 

sub1028 0.6000 0.1018 0.7782 69.7860 

sub1027 0.4615 0.0615 0.0000 86.1619 

sub1026 0.3617 0.0730 0.0000 88.9376 

sub1025 0.6863 0.1474 0.3891 60.8922 

sub1024 0.4419 0.0907 0.0000 84.9890 

sub1023 0.4681 0.1393 0.0000 70.4654 

sub1022 0.5854 0.1324 0.0000 71.7844 

sub1021 0.5000 0.0904 0.3891 80.9363 

sub1019 0.6087 0.1553 3.1128 60.2315 

sub1018 0.4634 0.1035 0.0000 82.4164 

sub1017 0.5349 0.1389 0.0000 84.9121 

sub1015 0.5000 0.1604 0.0000 72.3395 

sub1014 0.4444 0.1124 0.0000 70.2412 

sub1013 0.4912 0.1789 3.5019 54.9970 

sub1012 0.4468 0.1178 0.0000 64.4444 

sub1011 0.4912 0.1374 4.2802 57.8438 

sub1007 0.5417 0.1271 0.7782 66.8450 

sub1006 0.5682 0.1106 0.3891 67.8699 

sub1004 0.4444 0.0889 0.7782 85.7341 

sub1003 0.4500 0.0922 0.0000 79.1167 

sub1002 0.5208 0.1025 0.0000 65.6336 

sub1001 0.4000 0.1088 0.0000 76.4660 
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Regions removed from AAL120 brain parcellation 

No.  Anatomical description AAL label  

101, 102 Lobule IV, V of cerebellar hemisphere Cerebellum_4_5 

103, 104 Lobule VI of cerebellar hemisphere Cerebellum_6 

105, 106 Lobule VIIB of cerebellar hemisphere Cerebellum_7b 

107, 108 Lobule VIII of cerebellar hemisphere Cerebellum_8 

109, 110 Lobule IX of cerebellar hemisphere Cerebellum_9 

111, 112 Lobule X of cerebellar hemisphere Cerebellum_10 

113 Lobule I, II of vermis Vermis_1_2 

114 Lobule III of vermis Vermis_3 

115 Lobule IV, V of vermis Vermis_4_5 

116 Lobule VI of vermis Vermis_6 

117 Lobule VII of vermis Vermis_7 

118 Lobule VIII of vermis Vermis_8 

119 Lobule IX of vermis Vermis_9 

120 Lobule X of vermis Vermis_10 

Table S4 — The 20 brain regions removed from the AAL120 brain parcellation prior to LEiDA analysis due to NaN 
values across participants. This resulted in a 100-region brain parcellation.  
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